2,176 research outputs found

    Spoofing Detection Goes Noisy: An Analysis of Synthetic Speech Detection in the Presence of Additive Noise

    Full text link
    Automatic speaker verification (ASV) technology is recently finding its way to end-user applications for secure access to personal data, smart services or physical facilities. Similar to other biometric technologies, speaker verification is vulnerable to spoofing attacks where an attacker masquerades as a particular target speaker via impersonation, replay, text-to-speech (TTS) or voice conversion (VC) techniques to gain illegitimate access to the system. We focus on TTS and VC that represent the most flexible, high-end spoofing attacks. Most of the prior studies on synthesized or converted speech detection report their findings using high-quality clean recordings. Meanwhile, the performance of spoofing detectors in the presence of additive noise, an important consideration in practical ASV implementations, remains largely unknown. To this end, we analyze the suitability of state-of-the-art synthetic speech detectors under additive noise with a special focus on front-end features. Our comparison includes eight acoustic feature sets, five related to spectral magnitude and three to spectral phase information. Our extensive experiments on ASVSpoof 2015 corpus reveal several important findings. Firstly, all the countermeasures break down even at relatively high signal-to-noise ratios (SNRs) and fail to generalize to noisy conditions. Secondly, speech enhancement is not found helpful. Thirdly, GMM back-end generally outperforms the more involved i-vector back-end. Fourthly, concerning the compared features, the Mel-frequency cepstral coefficients (MFCCs) and subband spectral centroid magnitude coefficients (SCMCs) perform the best on average though the winner method depends on SNR and noise type. Finally, a study with two score fusion strategies shows that combining different feature based systems improves recognition accuracy for known and unknown attacks in both clean and noisy conditions.Comment: 23 Pages, 7 figure

    Speech Dereverberation Based on Integrated Deep and Ensemble Learning Algorithm

    Full text link
    Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data

    Voice Activity Detection: Merging Source and Filter-based Information

    Full text link
    Voice Activity Detection (VAD) refers to the problem of distinguishing speech segments from background noise. Numerous approaches have been proposed for this purpose. Some are based on features derived from the power spectral density, others exploit the periodicity of the signal. The goal of this paper is to investigate the joint use of source and filter-based features. Interestingly, a mutual information-based assessment shows superior discrimination power for the source-related features, especially the proposed ones. The features are further the input of an artificial neural network-based classifier trained on a multi-condition database. Two strategies are proposed to merge source and filter information: feature and decision fusion. Our experiments indicate an absolute reduction of 3% of the equal error rate when using decision fusion. The final proposed system is compared to four state-of-the-art methods on 150 minutes of data recorded in real environments. Thanks to the robustness of its source-related features, its multi-condition training and its efficient information fusion, the proposed system yields over the best state-of-the-art VAD a substantial increase of accuracy across all conditions (24% absolute on average)

    Robust Downbeat Tracking Using an Ensemble of Convolutional Networks

    Full text link
    In this paper, we present a novel state of the art system for automatic downbeat tracking from music signals. The audio signal is first segmented in frames which are synchronized at the tatum level of the music. We then extract different kind of features based on harmony, melody, rhythm and bass content to feed convolutional neural networks that are adapted to take advantage of each feature characteristics. This ensemble of neural networks is combined to obtain one downbeat likelihood per tatum. The downbeat sequence is finally decoded with a flexible and efficient temporal model which takes advantage of the metrical continuity of a song. We then perform an evaluation of our system on a large base of 9 datasets, compare its performance to 4 other published algorithms and obtain a significant increase of 16.8 percent points compared to the second best system, for altogether a moderate cost in test and training. The influence of each step of the method is studied to show its strengths and shortcomings

    UR-FUNNY: A Multimodal Language Dataset for Understanding Humor

    Full text link
    Humor is a unique and creative communicative behavior displayed during social interactions. It is produced in a multimodal manner, through the usage of words (text), gestures (vision) and prosodic cues (acoustic). Understanding humor from these three modalities falls within boundaries of multimodal language; a recent research trend in natural language processing that models natural language as it happens in face-to-face communication. Although humor detection is an established research area in NLP, in a multimodal context it is an understudied area. This paper presents a diverse multimodal dataset, called UR-FUNNY, to open the door to understanding multimodal language used in expressing humor. The dataset and accompanying studies, present a framework in multimodal humor detection for the natural language processing community. UR-FUNNY is publicly available for research

    Between Homomorphic Signal Processing and Deep Neural Networks: Constructing Deep Algorithms for Polyphonic Music Transcription

    Full text link
    This paper presents a new approach in understanding how deep neural networks (DNNs) work by applying homomorphic signal processing techniques. Focusing on the task of multi-pitch estimation (MPE), this paper demonstrates the equivalence relation between a generalized cepstrum and a DNN in terms of their structures and functionality. Such an equivalence relation, together with pitch perception theories and the recently established rectified-correlations-on-a-sphere (RECOS) filter analysis, provide an alternative way in explaining the role of the nonlinear activation function and the multi-layer structure, both of which exist in a cepstrum and a DNN. To validate the efficacy of this new approach, a new feature designed in the same fashion is proposed for pitch salience function. The new feature outperforms the one-layer spectrum in the MPE task and, as predicted, it addresses the issue of the missing fundamental effect and also achieves better robustness to noise

    A Compact and Discriminative Feature Based on Auditory Summary Statistics for Acoustic Scene Classification

    Full text link
    One of the biggest challenges of acoustic scene classification (ASC) is to find proper features to better represent and characterize environmental sounds. Environmental sounds generally involve more sound sources while exhibiting less structure in temporal spectral representations. However, the background of an acoustic scene exhibits temporal homogeneity in acoustic properties, suggesting it could be characterized by distribution statistics rather than temporal details. In this work, we investigated using auditory summary statistics as the feature for ASC tasks. The inspiration comes from a recent neuroscience study, which shows the human auditory system tends to perceive sound textures through time-averaged statistics. Based on these statistics, we further proposed to use linear discriminant analysis to eliminate redundancies among these statistics while keeping the discriminative information, providing an extreme com-pact representation for acoustic scenes. Experimental results show the outstanding performance of the proposed feature over the conventional handcrafted features.Comment: Accepted as a conference paper of Interspeech 201

    Mixup-Based Acoustic Scene Classification Using Multi-Channel Convolutional Neural Network

    Full text link
    Audio scene classification, the problem of predicting class labels of audio scenes, has drawn lots of attention during the last several years. However, it remains challenging and falls short of accuracy and efficiency. Recently, Convolutional Neural Network (CNN)-based methods have achieved better performance with comparison to the traditional methods. Nevertheless, conventional single channel CNN may fail to consider the fact that additional cues may be embedded in the multi-channel recordings. In this paper, we explore the use of Multi-channel CNN for the classification task, which aims to extract features from different channels in an end-to-end manner. We conduct the evaluation compared with the conventional CNN and traditional Gaussian Mixture Model-based methods. Moreover, to improve the classification accuracy further, this paper explores the using of mixup method. In brief, mixup trains the neural network on linear combinations of pairs of the representation of audio scene examples and their labels. By employing the mixup approach for data argumentation, the novel model can provide higher prediction accuracy and robustness in contrast with previous models, while the generalization error can also be reduced on the evaluation data

    Musical notes classification with Neuromorphic Auditory System using FPGA and a Convolutional Spiking Network

    Get PDF
    In this paper, we explore the capabilities of a sound classification system that combines both a novel FPGA cochlear model implementation and a bio-inspired technique based on a trained convolutional spiking network. The neuromorphic auditory system that is used in this work produces a form of representation that is analogous to the spike outputs of the biological cochlea. The auditory system has been developed using a set of spike-based processing building blocks in the frequency domain. They form a set of band pass filters in the spike-domain that splits the audio information in 128 frequency channels, 64 for each of two audio sources. Address Event Representation (AER) is used to communicate the auditory system with the convolutional spiking network. A layer of convolutional spiking network is developed and trained on a computer with the ability to detect two kinds of sound: artificial pure tones in the presence of white noise and electronic musical notes. After the training process, the presented system is able to distinguish the different sounds in real-time, even in the presence of white noise.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    Machine Learning For Distributed Acoustic Sensors, Classic versus Image and Deep Neural Networks Approach

    Full text link
    Distributed Acoustic Sensing (DAS) using fiber optic cables is a promising new technology for pipeline monitoring and protection. In this work, we applied and compared two approaches for event detection using DAS: Classic machine learning approach and the approach based on image processing and deep learning. Although with both approaches acceptable performance can be achieved, the preliminary results show that image based deep learning is more promising approach, offering six times lower event detection delay and twelve times lower execution time
    corecore