11,508 research outputs found

    A 300-800MHz Tunable Filter and Linearized LNA applied in a Low-Noise Harmonic-Rejection RF-Sampling Receiver

    Get PDF
    A multiband flexible RF-sampling receiver aimed at software-defined radio is presented. The wideband RF sampling function is enabled by a recently proposed discrete-time mixing downconverter. This work exploits a voltage-sensing LNA preceded by a tunable LC pre-filter with one external coil to demonstrate an RF-sampling receiver with low noise figure (NF) and high harmonic rejection (HR). The second-order LC filter provides voltage pre-gain and attenuates the source noise aliasing, and it also improves the HR ratio of the sampling downconverter. The LNA consists of a simple amplifier topology built from inverters and resistors to improve the third-order nonlinearity via an enhanced voltage mirror technique. The RF-sampling receiver employs 8 times oversampling covering 300 to 800 MHz in two RF sub-bands. The chip is realized in 65 nm CMOS and the measured gain across the band is between 22 and 28 dB, while achieving a NF between 0.8 to 4.3 dB. The IIP2 varies between +38 and +49 dBm and the IIP3 between -14 dBm and -9 dBm, and the third and fifth order HR ratios are more than 60 dB. The LNA and downconverter consumes 6 mW, and the clock generator takes 12 mW at 800 MHz RF.\ud \u

    Design of an integrated analog controller for a Class-D Audio Amplifier

    Get PDF
    An integrated analog controller for a self-oscillating class-D audio power amplifier is designed in a 0.35 ÎŒm CMOS technology for a 3.3 Volt power supply. It is intended to be used with an external output stage and passive filter, for medium power applications of upto a few 100 Watts. The controller was optimized with regard to its loop gain to suppress the distortion of the output stage. In typical commercially available output stages, the distortion is dominated by dead time effects and the THD can be as low as 20 dB. The controller uses self-oscillation to generate the carrier. To control the self-oscillation a second order phase shift network is embedded in the loop. To increase the loop gain a fifth-order loop filter is added. For a switching frequency of 400kHz the controller achieves a loop gain of 51 dB, nearly flat over the audio band. For reasons of flexibility, the order of the controller is made programmable, as well as the dead time and the delay in the loop. Full spice simulations of the controller combined with an external 120 Watt output stage indicate that a THD of upto 80 dB (better than 0.01%) can be obtained even under the worst case condition of a dead time of 50 ns

    Modeling OpAmp-induced harmonic distortion for switched-capacitor ΣΔ modulator design

    Get PDF
    This communication reports a new modeling of opamp-induced harmonic distortion in SC ΣΔ modulators, which is aimed to optimum design of this kind of circuit for high-performance applications. We analyze incomplete transfer of charge in a SC integrator and use power expansion and nonlinear fitting to obtain analytical models to represent harmonic distortion as function of the opamp finite gain-bandwidth (GB), slew-rate (SR) and nonlinear DC gain. Calculated models apply for all modulator architectures where harmonic distortion is dominated by the first integrator in the chain. We show that results provided by the new analytical models fit well to that obtained by simulation in time domain and have accuracy levels much larger than that provided by previously reported modeling approaches

    Theory Based on Device Current Clipping to Explain and Predict Performance Including Distortion of Power Amplifiers for Wireless Communication Systems

    Get PDF
    Power amplifiers are critical components in wireless communication systems that need to have high efficiency, in order to conserve battery life and minimise heat generation, and at the same time low distortion, in order to prevent increase of bit error rate due to constellation errors and adjacent channel interference. This thesis is aimed at meeting a need for greater understanding of distortion generated by power amplifiers of any technology, in order to help designers manage better the trade-off between obtaining high efficiency and low distortion. The theory proposed in this thesis to explain and predict the performance of power amplifiers, including distortion, is based on analysis of clipping of the power amplifier device current, and it is a major extension of previous clipping analyses, that introduces many key definitions and concepts. Distortion and other power amplifier metrics are determined in the form of 3-D surfaces that are plotted against PA class, which is determined by bias voltage, and input signal power level. It is shown that the surface of distortion exhibits very high levels due to clipping in the region where efficiency is high. This area of high distortion is intersected by a valley that is ‘L’-shaped. The 'L'-shaped valley is subject to a rotation that depends on the softness of the cut-off of the power amplifier device transfer characteristic. The distortion surface with rotated 'L'-shaped valley leads to predicted curves for distortion versus input signal power that match published measured curves for power amplifiers even using very simple device models. The distortion versus input signal power curves have types that are independent of technology. In class C, there is a single deep null. In the class AB range, that is divided into three sub-ranges, there may be two deep nulls (sub-range AB(B)), a ledge (sub-range AB(A)) or a shallow null with varying depth (sub-range AB(AB))

    On the Design of Voltage-Controlled Sinusoidal Oscillators Using OTA's

    Get PDF
    A unified systematic approach to the design of voltage-controlled oscillators using only operational transconductance amplifiers (OTA's) and capacitors is discussed in this paper. Two classical oscillator models, i.e., quadrature and bandpass-based, are employed to generate several oscillator structures. They are very appropriate for silicon monolithic implementations. The resulting oscillation frequencies are proportional to the transconductance of the OTA and this makes the reported structures well-suited for building voltage controlled oscillators (VCO's). Amplitude stabilization circuits using both automatic gain control (AGC) mechanisms and limitation schemes are presented which are compatible with the transconductance amplifier capacitor oscillator (TACO). Experimental results from bipolar breadboard and CMOS IC prototypes are included showing good potential of OTA-based oscillators for high frequency VCO operation.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a ME87-000

    Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Get PDF
    The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA) based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends

    Increasing the talk-time of mobile radios with efficient linear transmitter architectures

    Get PDF

    A 5-MHz 11-bit delay-based self-oscillating ΣΔ modulator in 0.025 mm2

    Get PDF
    In this paper a self-oscillating Sigma Delta modulator is presented. By introducing this self-oscillation in the system, the loop filter operates at a speed significantly lower than dictated by the clock frequency. This allows for a simple and power efficient design of the opamps used in the loop filter. The self-oscillation is induced here by introducing a controlled delay in the feedback loop of the modulator. A second order CMOS prototype was constructed in a 0.18 um technology. A clock frequency of 850MHz generates a self-oscillation mode at 106.25 MHz. The modulator achieves a dynamic range (DR) of 66 dB for a signal bandwidth of 5 MHz. The power consumption is only 6mW and the chip area of the modulator core is 0.025mm^2
    • 

    corecore