51 research outputs found

    Protection systems and stability of distribution networks and microgrids with distributed energy resources

    Get PDF
    The large-scale integration of Distributed Energy Resources in distribution networks has several technical implications and consequences, which increase in complexity when energy sources are of renewable type. Renewable Energy Sources are characterized by intermittent/unpredictable availability and are connected to the grid through converters, often close to the final users, which means that they are more prone to cause instability issues and potential mis-operation of protection schemes. These effects are the objects of this thesis. A protection system against earth faults in radial and meshed distribution networks with unearthed and compensated neutral is proposed and assessed. The faulty feeder identification algorithm is based on the angle between the zero-sequence voltage and current phasors, estimated at the dominant transient frequency inferred from the transient response of the network within the first milliseconds after the fault. The performances of the protection system algorithm are assessed through a Monte Carlo method that considers the fault resistance, incidence angle and fault location variations. The power system is simulated within the EMTP-RV environment, while the protection algorithm is developed in Matlab. Results of a real-time simulation obtained in the Opal-RT environment further support the applicability of the algorithm. Another important aspect of the large deployment of distributed resources are the diffusion of Microgrids (MGs) which are characterized by faster dynamics than conventional distributions systems. In this context, load dynamics considerably affect the transient stability performance of MGs. The transient stability of a medium voltage MG is analyzed in two different cases: an islanding transition and a fault when the MG is standalone. The exclusion of any rotating generator is expected to heighten the load influence on the system dynamics. Modern controllable loads are also included. The system is implemented in the EMTP-RV simulation environment, in Simulink and real-time simulations are carried out in the Opal-RT environment

    Investigation into Photovoltaic Distributed Generation Penetration in the Low Voltage Distribution Network

    Get PDF
    Significant integration of photovoltaic distributed generation (PVDG) in the low voltage distribution network (LVDN) could potentially pose threats and challenges to the core activity of distribution system operators (DSO), which is to transport electrical energy in a reliable and cost-effective way. The main aim of this research is to investigate the active planning and operation of LVDNs with increased PVDG integration through steady state power system analysis. To address the impacts of voltage profile fluctuation due to power flow modification, this research proposes a probabilistic risk assessment of power quality (PQ) variations and events that may arise due to significant PVDG integration. A Monte Carlo based simulation is applied for the probabilistic risk assessment. This probabilistic approach is used as a tool to assess the likely impacts due to PVDG integration against the extreme-case scenarios. With increased PVDG integration, site overvoltage is a likely impact, whereas voltage unbalance reduces when compared with no or low PVDG penetration cases. This is primarily due to the phase cancellation between the phases. The other aspect of the work highlights the fact that the implementation of existing volumetric charges in conjunction with net-metering can have negative impacts on network operator’s revenue. However, consideration of capacity charges in designing the existing network tariff structure shows incentivising the network operator to perform their core duties under increased integration of PVDG. The site overvoltage issue was also studied and resolved in a novel way, where the active and reactive power of the PVDG inverters at all the PV installed premises were optimally coordinated to increase the PV penetration from 35.7% to 66.7% of the distribution transformer rating. This work further explores how deficiencies in both reactive power control (RPC) and active power control (APC) as separate approaches can be mitigated by suitably combining RPC and APC algorithms. A novel “Q” or “PF” limiter was proposed to restrict frequent switching between the two droop characteristics while ensuring a stabilizing (smoothened) voltage profile in each of the PV installed nodes. This novel approach not only alleviates the voltage fluctuation but also reduces the overall network losses

    Investigation of domestic level EV chargers in the Distribution Network: An Assessment and mitigation solution

    Get PDF
    This research focuses on the electrification of the transport sector. Such electrification could potentially pose challenges to the distribution system operator (DSO) in terms of reliability, power quality and cost-effective implementation. This thesis contributes to both, an Electrical Vehicle (EV) load demand profiling and advanced use of reactive power compensation (D-STATCOM) to facilitate flexible and secure network operation. The main aim of this research is to investigate the planning and operation of low voltage distribution networks (LVDN) with increasing electrical vehicles (EVs) proliferation and the effects of higher demand charging systems. This work is based on two different independent strands of research. Firstly, the thesis illustrates how the flexibility and composition of aggregated EVs demand can be obtained with very limited information available. Once the composition of demand is available, future energy scenarios are analysed in respect to the impact of higher EVs charging rates on single phase connections at LV distribution network level. A novel planning model based on energy scenario simulations suitable for the utilization of existing assets is developed. The proposed framework can provide probabilistic risk assessment of power quality (PQ) variations that may arise due to the proliferation of significant numbers of EVs chargers. Monte Carlo (MC) based simulation is applied in this regard. This probabilistic approach is used to estimate the likely impact of EVs chargers against the extreme-case scenarios. Secondly, in relation to increased EVs penetration, dynamic reactive power reserve management through network voltage control is considered. In this regard, a generic distribution static synchronous compensator (D-STATCOM) model is adapted to achieve network voltage stability. The main emphasis is on a generic D-STATCOM modelling technique, where each individual EV charging is considered through a probability density function that is inclusive of dynamic D-STATCOM support. It demonstrates how optimal techniques can consider the demand flexibility at each bus to meet the requirement of network operator while maintaining the relevant steady state and/or dynamic performance indicators (voltage level) of the network. The results show that reactive power compensation through D-STATCOM, in the context of EVs integration, can provide continuous voltage support and thereby facilitate 90% penetration of network customers with EV connections at a normal EV charging rate (3.68 kW). The results are improved by using optimal power flow. The results suggest, if fast charging (up to 11 kW) is employed, up to 50% of network EV customers can be accommodated by utilising the optimal planning approach. During the case study, it is observed that the transformer loading is increased significantly in the presence of D-STATCOM. The transformer loading reaches approximately up to 300%, in one of the contingencies at 11 kW EV charging, so transformer upgrading is still required. Three-phase connected DSTATCOM is normally used by the DSO to control power quality issues in the network. Although, to maintain voltage level at each individual phase with three-phase connected device is not possible. So, single-phase connected D-STATCOM is used to control the voltage at each individual phase. Single-phase connected D-STATCOM is able maintain the voltage level at each individual phase at 1 p.u. This research will be of interest to the DSO, as it will provide an insight to the issues associated with higher penetration of EV chargers, present in the realization of a sustainable transport electrification agenda

    Lightning Modeling and Its Effects on Electric Infrastructures

    Get PDF
    When it comes to dealing with high voltages or issues of high electric currents, infrastructure security and people’s safety are of paramount importance. These kinds of phenomena have dangerous consequences, therefore studies concerning the effects of lightning are crucial. The normal operation of transmission and distribution systems is greatly affected by lightning, which is one of the major causes of power interruptions: direct or nearby indirect strikes can cause flashovers in overhead transmission and distribution lines, resulting in over voltages on the line conductors. Contributions to this Special Issue have mainly focused on modelling lightning activity, investigating physical causes, and discussing and testing mathematical models for the electromagnetic fields associated with lighting phenomena. In this framework, two main topics have emerged: 1) the interaction between lightning phenomena and electrical infrastructures, such as wind turbines and overhead lines; and 2) the computation of lightning electromagnetic fields in the case of particular configuration, considering a negatively charged artificial thunderstorm or considering a complex terrain with arbitrary topograph

    Power System Transients: Impacts of Non-Ideal Sensors on Measurement-Based Applications

    Get PDF
    The power system is comprised of thousands of lines, generation sources, transformers, and other equipment responsible for servicing millions of customers. Such a complex apparatus requires constant monitoring and protection schemes capable of keeping the system operational, reliable, and resilient. To achieve these goals, measurement is a critical role in the continued functionality of the power system. However, measurement devices are never completely reliable, and are susceptible to inherent irregularities; imparting potentially misleading distortions on measurements containing high-frequency components. This dissertation analyzes some of these effects, as well as the way they may impact certain applications in the grid that utilize these kinds of measurements. This dissertation first presents background on existing measurement technologies currently in use in the power grid, with extra emphasis placed on point-on-wave (PoW) sensors, those designed to capture oscillographic records of voltage and current signals. Next, a waveform “playback” system, developed at Oak Ridge National Laboratory’s Distributed Energy Communications \& Control (DECC) laboratory was used for comparisons between various line-post-monitor PoW sensors when subjected to different high-frequency current disturbances. Each of the three sensors exhibited unique quirks in these spectral regions, both in terms of harmonic magnitude and phase angle. A goodness-of-fit metric for comparing an ideal reference sensor with the test sensors was adopted from the literature and showed the extremes to which two test sensors vastly under performed when compared to the third. The subsequent chapter analyzes these behaviors under a statistical lens, using kernel density estimation to fit probability density functions (PDFs) to error distributions at specific harmonic frequencies resulting from sensor frequency response distortions. The remaining two chapters of the dissertation are concerned with resultant effects on applications that require high-frequency transient data. First, a detection algorithm is presented, and its performance when subjected to statistical errors inherent in these sensors is quantified. The dissertation culminates with a study on an artificial intelligence (AI) technique for estimating the location of capacitor switching transients, as well as learning prediction intervals that indicate the level of uncertainty present in the data caused by sensor frequency response irregularities

    Advances and Technologies in High Voltage Power Systems Operation, Control, Protection and Security

    Get PDF
    The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems

    Stochastic harmonic emission model of aggregate residential customers

    Get PDF
    Harmonic propagation studies of public distribution networks require accurate models of aggregate residential customers (groups of customers) that simulate the harmonic emission of the multitude of household appliances in the network. Most of the present models were developed with the component-based approach, where models of individual household appliances are combined to build the model of multiple customers. This approach requires high amount of input data, like models of individual household appliances and detail information of customer behavior and device composition, which is usually not easy to acquire. However, with the increasing number of PQ-analyzers in the networks, the measurement-based approach is now more and more considered for the modeling of aggregate customers. The measurement-based approach uses measurements of the network in combination with top-down methodologies to obtain models of the aggregate customers. Compared to the component-based approach it has several advantages, like inherent consideration of the real operating changes of the individual household appliances, variation of customer behavior, effect of line impedances, cancellation and attenuation effects, etc. This thesis presents the development of a time-series stochastic model of the low-order harmonic emission of aggregate residential customers based on a top-down measurement-based approach. The model represents the daily variation of the harmonic magnitudes and phase angles. Besides, the model includes the representation of the harmonic unbalances, which is of great importance for the proper analysis of harmonic propagation in medium-voltage networks. The model is parametrized for German networks, but the methodology can be applied to find the models of other regions or countries

    Degradation analysis of metal oxide varistors under harmonic distortion conditions

    Get PDF
    A thesis submitted in ful lment of the requirements for the degree Doctor of Philosophy in Electrical Engineering May 2016Modern electrical networks provide an opportunity for inevitable interaction between metal oxide arresters and power system harmonics. Therefore, these arrester devices are continuously exposed to the combined e ect of distorted system voltage and envi- ronmental thermal stresses. Recent studies supported by eld experiments have shown signi cant rise in the leakage current through these surge arrester devices when exposed to ac voltage with harmonics. However, the major shortcoming in the current knowledge and applications of varistor arresters resides on the reliability and the electrical stabil- ity of these overvoltage protection units, when subjected to long-term and continuous distorted ac voltage and thermal stresses from the environment. Commercially-sourced ZnO arresters of similar size and electrical properties are tested using standard ac accelerated degradation procedure or electro-thermal ageing test. The times to degradation, the coe cient of non-linearity, the reference voltages, as well as the clamping voltage measured are used to analyse the reliability and the electrical stability of the metal oxide-based arrester samples. The resistive component of the leakage current is extracted from the measured total leakage current. The three-parameter Weibull probability model is invoked in order to analyze the degradation phenomenon.MT201

    Identification and development of microgrids emergency control procedures

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    corecore