1,808 research outputs found

    Harmonic density interpolation methods for high-order evaluation of Laplace layer potentials in 2D and 3D

    Full text link
    We present an effective harmonic density interpolation method for the numerical evaluation of singular and nearly singular Laplace boundary integral operators and layer potentials in two and three spatial dimensions. The method relies on the use of Green's third identity and local Taylor-like interpolations of density functions in terms of harmonic polynomials. The proposed technique effectively regularizes the singularities present in boundary integral operators and layer potentials, and recasts the latter in terms of integrands that are bounded or even more regular, depending on the order of the density interpolation. The resulting boundary integrals can then be easily, accurately, and inexpensively evaluated by means of standard quadrature rules. A variety of numerical examples demonstrate the effectiveness of the technique when used in conjunction with the classical trapezoidal rule (to integrate over smooth curves) in two-dimensions, and with a Chebyshev-type quadrature rule (to integrate over surfaces given as unions of non-overlapping quadrilateral patches) in three-dimensions

    Planewave density interpolation methods for 3D Helmholtz boundary integral equations

    Full text link
    This paper introduces planewave density interpolation methods for the regularization of weakly singular, strongly singular, hypersingular and nearly singular integral kernels present in 3D Helmholtz surface layer potentials and associated integral operators. Relying on Green's third identity and pointwise interpolation of density functions in the form of planewaves, these methods allow layer potentials and integral operators to be expressed in terms of integrand functions that remain smooth (at least bounded) regardless the location of the target point relative to the surface sources. Common challenging integrals that arise in both Nystr\"om and boundary element discretization of boundary integral equation, can then be numerically evaluated by standard quadrature rules that are irrespective of the kernel singularity. Closed-form and purely numerical planewave density interpolation procedures are presented in this paper, which are used in conjunction with Chebyshev-based Nystr\"om and Galerkin boundary element methods. A variety of numerical examples---including problems of acoustic scattering involving multiple touching and even intersecting obstacles, demonstrate the capabilities of the proposed technique

    A fast integral equation method for solid particles in viscous flow using quadrature by expansion

    Full text link
    Boundary integral methods are advantageous when simulating viscous flow around rigid particles, due to the reduction in number of unknowns and straightforward handling of the geometry. In this work we present a fast and accurate framework for simulating spheroids in periodic Stokes flow, which is based on the completed double layer boundary integral formulation. The framework implements a new method known as quadrature by expansion (QBX), which uses surrogate local expansions of the layer potential to evaluate it to very high accuracy both on and off the particle surfaces. This quadrature method is accelerated through a newly developed precomputation scheme. The long range interactions are computed using the spectral Ewald (SE) fast summation method, which after integration with QBX allows the resulting system to be solved in M log M time, where M is the number of particles. This framework is suitable for simulations of large particle systems, and can be used for studying e.g. porous media models

    High-order, Dispersionless "Fast-Hybrid" Wave Equation Solver. Part I: O(1)\mathcal{O}(1) Sampling Cost via Incident-Field Windowing and Recentering

    Get PDF
    This paper proposes a frequency/time hybrid integral-equation method for the time dependent wave equation in two and three-dimensional spatial domains. Relying on Fourier Transformation in time, the method utilizes a fixed (time-independent) number of frequency-domain integral-equation solutions to evaluate, with superalgebraically-small errors, time domain solutions for arbitrarily long times. The approach relies on two main elements, namely, 1) A smooth time-windowing methodology that enables accurate band-limited representations for arbitrarily-long time signals, and 2) A novel Fourier transform approach which, in a time-parallel manner and without causing spurious periodicity effects, delivers numerically dispersionless spectrally-accurate solutions. A similar hybrid technique can be obtained on the basis of Laplace transforms instead of Fourier transforms, but we do not consider the Laplace-based method in the present contribution. The algorithm can handle dispersive media, it can tackle complex physical structures, it enables parallelization in time in a straightforward manner, and it allows for time leaping---that is, solution sampling at any given time TT at O(1)\mathcal{O}(1)-bounded sampling cost, for arbitrarily large values of TT, and without requirement of evaluation of the solution at intermediate times. The proposed frequency-time hybridization strategy, which generalizes to any linear partial differential equation in the time domain for which frequency-domain solutions can be obtained (including e.g. the time-domain Maxwell equations), and which is applicable in a wide range of scientific and engineering contexts, provides significant advantages over other available alternatives such as volumetric discretization, time-domain integral equations, and convolution-quadrature approaches.Comment: 33 pages, 8 figures, revised and extended manuscript (and now including direct comparisons to existing CQ and TDIE solver implementations) (Part I of II

    Spectrally Accurate Quadratures for Evaluation of Layer Potentials Close to the Boundary for the 2D Stokes and Laplace Equations

    Get PDF
    Dense particulate flow simulations using integral equation methods demand accurate evaluation of Stokes layer potentials on arbitrarily close interfaces. In this paper, we generalize techniques for close evaluation of Laplace double-layer potentials in [J. Helsing and R. Ojala, J. Comput. Phys., 227 (2008), pp. 2899--2921]. We create a “globally compensated” trapezoid rule quadrature for the Laplace single-layer potential on the interior and exterior of smooth curves. This exploits a complex representation, a product quadrature (in the style of Kress) for the sawtooth function, careful attention to branch cuts, and second-kind barycentric-type formulae for Cauchy integrals and their derivatives. Upon this we build accurate single- and double-layer Stokes potential evaluators by expressing them in terms of Laplace potentials. We test their convergence for vesicle-vesicle interactions, for an extensive set of Laplace and Stokes problems, and when applying the system matrix in a boundary value problem solver in the exterior of multiple close-to-touching ellipses. We achieve typically 12 digits of accuracy using small numbers of discretization nodes per curve. We provide documented codes for other researchers to use

    General-purpose kernel regularization of boundary integral equations via density interpolation

    Full text link
    This paper presents a general high-order kernel regularization technique applicable to all four integral operators of Calder\'on calculus associated with linear elliptic PDEs in two and three spatial dimensions. Like previous density interpolation methods, the proposed technique relies on interpolating the density function around the kernel singularity in terms of solutions of the underlying homogeneous PDE, so as to recast singular and nearly singular integrals in terms of bounded (or more regular) integrands. We present here a simple interpolation strategy which, unlike previous approaches, does not entail explicit computation of high-order derivatives of the density function along the surface. Furthermore, the proposed approach is kernel- and dimension-independent in the sense that the sought density interpolant is constructed as a linear combination of point-source fields, given by the same Green's function used in the integral equation formulation, thus making the procedure applicable, in principle, to any PDE with known Green's function. For the sake of definiteness, we focus here on Nystr\"om methods for the (scalar) Laplace and Helmholtz equations and the (vector) elastostatic and time-harmonic elastodynamic equations. The method's accuracy, flexibility, efficiency, and compatibility with fast solvers are demonstrated by means of a variety of large-scale three-dimensional numerical examples
    • 

    corecore