1,678 research outputs found

    The \u201cHarmonic Walk\u201d and Enactive Knowledge: an Assessment Report

    Get PDF
    The Harmonic Walk is an interactive, physical environment based on user\u2019s motion detection and devoted to the study and practice of tonal harmony. When entering the rectangular floor surface within the application\u2019s camera view, a user can actually walk inside the musical structure, causing a sound feedback depending on the occupied zone. We arranged a two masks projection set up to allow users to experience melodic segmentation and tonality harmonic space, and we planned two phase assessment sessions, submitting a 22 high school student group to various test conditions. Our findings demonstrate the high learning effectiveness of the Harmonic Walk application. Its ability to transfer abstract concepts in an enactive way, produces important improvement rates both for subjects who received explicit information and for subjects who didn\u2019t

    Harmonic Change Detection from Musical Audio

    Get PDF
    In this dissertation, we advance an enhanced method for computing Harte et al.’s [31] Harmonic Change Detection Function (HCDF). HCDF aims to detect harmonic transitions in musical audio signals. HCDF is crucial both for the chord recognition in Music Information Retrieval (MIR) and a wide range of creative applications. In light of recent advances in harmonic description and transformation, we depart from the original architecture of Harte et al.’s HCDF, to revisit each one of its component blocks, which are evaluated using an exhaustive grid search aimed to identify optimal parameters across four large style-specific musical datasets. Our results show that the newly proposed methods and parameter optimization improve the detection of harmonic changes, by 5.57% (f-score) with respect to previous methods. Furthermore, while guaranteeing recall values at > 99%, our method improves precision by 6.28%. Aiming to leverage novel strategies for real-time harmonic-content audio processing, the optimized HCDF is made available for Javascript and the MAX and Pure Data multimedia programming environments. Moreover, all the data as well as the Python code used to generate them, are made available.<br /

    Automatic chord transcription from audio using computational models of musical context

    Get PDF
    PhDThis thesis is concerned with the automatic transcription of chords from audio, with an emphasis on modern popular music. Musical context such as the key and the structural segmentation aid the interpretation of chords in human beings. In this thesis we propose computational models that integrate such musical context into the automatic chord estimation process. We present a novel dynamic Bayesian network (DBN) which integrates models of metric position, key, chord, bass note and two beat-synchronous audio features (bass and treble chroma) into a single high-level musical context model. We simultaneously infer the most probable sequence of metric positions, keys, chords and bass notes via Viterbi inference. Several experiments with real world data show that adding context parameters results in a significant increase in chord recognition accuracy and faithfulness of chord segmentation. The proposed, most complex method transcribes chords with a state-of-the-art accuracy of 73% on the song collection used for the 2009 MIREX Chord Detection tasks. This method is used as a baseline method for two further enhancements. Firstly, we aim to improve chord confusion behaviour by modifying the audio front end processing. We compare the effect of learning chord profiles as Gaussian mixtures to the effect of using chromagrams generated from an approximate pitch transcription method. We show that using chromagrams from approximate transcription results in the most substantial increase in accuracy. The best method achieves 79% accuracy and significantly outperforms the state of the art. Secondly, we propose a method by which chromagram information is shared between repeated structural segments (such as verses) in a song. This can be done fully automatically using a novel structural segmentation algorithm tailored to this task. We show that the technique leads to a significant increase in accuracy and readability. The segmentation algorithm itself also obtains state-of-the-art results. A method that combines both of the above enhancements reaches an accuracy of 81%, a statistically significant improvement over the best result (74%) in the 2009 MIREX Chord Detection tasks.Engineering and Physical Research Council U

    Integrating musicological knowledge into a probabilistic framework for chord and key extraction

    Get PDF
    In this contribution a formerly developed probabilistic framework for the simultaneous detection of chords and keys in polyphonic audio is further extended and validated. The system behaviour is controlled by a small set of carefully defined free parameters. This has permitted us to conduct an experimental study which sheds a new light on the importance of musicological knowledge in the context of chord extraction. Some of the obtained results are at least surprising and, to our knowledge, never reported as such before

    Modeling musicological information as trigrams in a system for simultaneous chord and local key extraction

    Get PDF
    In this paper, we discuss the introduction of a trigram musicological model in a simultaneous chord and local key extraction system. By enlarging the context of the musicological model, we hoped to achieve a higher accuracy that could justify the associated higher complexity and computational load of the search for the optimal solution. Experiments on multiple data sets have demonstrated that the trigram model has indeed a larger predictive power (a lower perplexity). This raised predictive power resulted in an improvement in the key extraction capabilities, but no improvement in chord extraction when compared to a system with a bigram musicological model

    Performance Following: Real-Time Prediction of Musical Sequences Without a Score

    Get PDF
    (c)2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works
    corecore