1,189 research outputs found

    Automatic transcription of polyphonic music exploiting temporal evolution

    Get PDF
    PhDAutomatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    Acoustically Inspired Probabilistic Time-domain Music Transcription and Source Separation.

    Get PDF
    PhD ThesisAutomatic music transcription (AMT) and source separation are important computational tasks, which can help to understand, analyse and process music recordings. The main purpose of AMT is to estimate, from an observed audio recording, a latent symbolic representation of a piece of music (piano-roll). In this sense, in AMT the duration and location of every note played is reconstructed from a mixture recording. The related task of source separation aims to estimate the latent functions or source signals that were mixed together in an audio recording. This task requires not only the duration and location of every event present in the mixture, but also the reconstruction of the waveform of all the individual sounds. Most methods for AMT and source separation rely on the magnitude of time-frequency representations of the analysed recording, i.e., spectrograms, and often arbitrarily discard phase information. On one hand, this decreases the time resolution in AMT. On the other hand, discarding phase information corrupts the reconstruction in source separation, because the phase of each source-spectrogram must be approximated. There is thus a need for models that circumvent phase approximation, while operating at sample-rate resolution. This thesis intends to solve AMT and source separation together from an unified perspective. For this purpose, Bayesian non-parametric signal processing, covariance kernels designed for audio, and scalable variational inference are integrated to form efficient and acoustically-inspired probabilistic models. To circumvent phase approximation while keeping sample-rate resolution, AMT and source separation are addressed from a Bayesian time-domain viewpoint. That is, the posterior distribution over the waveform of each sound event in the mixture is computed directly from the observed data. For this purpose, Gaussian processes (GPs) are used to define priors over the sources/pitches. GPs are probability distributions over functions, and its kernel or covariance determines the properties of the functions sampled from a GP. Finally, the GP priors and the available data (mixture recording) are combined using Bayes' theorem in order to compute the posterior distributions over the sources/pitches. Although the proposed paradigm is elegant, it introduces two main challenges. First, as mentioned before, the kernel of the GP priors determines the properties of each source/pitch function, that is, its smoothness, stationariness, and more importantly its spectrum. Consequently, the proposed model requires the design of flexible kernels, able to learn the rich frequency content and intricate properties of audio sources. To this end, spectral mixture (SM) kernels are studied, and the Mat ern spectral mixture (MSM) kernel is introduced, i.e. a modified version of the SM covariance function. The MSM kernel introduces less strong smoothness, thus it is more suitable for modelling physical processes. Second, the computational complexity of GP inference scales cubically with the number of audio samples. Therefore, the application of GP models to large audio signals becomes intractable. To overcome this limitation, variational inference is used to make the proposed model scalable and suitable for signals in the order of hundreds of thousands of data points. The integration of GP priors, kernels intended for audio, and variational inference could enable AMT and source separation time-domain methods to reconstruct sources and transcribe music in an efficient and informed manner. In addition, AMT and source separation are current challenges, because the spectra of the sources/pitches overlap with each other in intricate ways. Thus, the development of probabilistic models capable of differentiating sources/pitches in the time domain, despite the high similarity between their spectra, opens the possibility to take a step towards solving source separation and automatic music transcription. We demonstrate the utility of our methods using real and synthesized music audio datasets for various types of musical instruments
    • …
    corecore