3,145 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    The potential of programmable logic in the middle: cache bleaching

    Full text link
    Consolidating hard real-time systems onto modern multi-core Systems-on-Chip (SoC) is an open challenge. The extensive sharing of hardware resources at the memory hierarchy raises important unpredictability concerns. The problem is exacerbated as more computationally demanding workload is expected to be handled with real-time guarantees in next-generation Cyber-Physical Systems (CPS). A large body of works has approached the problem by proposing novel hardware re-designs, and by proposing software-only solutions to mitigate performance interference. Strong from the observation that unpredictability arises from a lack of fine-grained control over the behavior of shared hardware components, we outline a promising new resource management approach. We demonstrate that it is possible to introduce Programmable Logic In-the-Middle (PLIM) between a traditional multi-core processor and main memory. This provides the unique capability of manipulating individual memory transactions. We propose a proof-of-concept system implementation of PLIM modules on a commercial multi-core SoC. The PLIM approach is then leveraged to solve long-standing issues with cache coloring. Thanks to PLIM, colored sparse addresses can be re-compacted in main memory. This is the base principle behind the technique we call Cache Bleaching. We evaluate our design on real applications and propose hypervisor-level adaptations to showcase the potential of the PLIM approach.Accepted manuscrip

    ATMP: An Adaptive Tolerance-based Mixed-criticality Protocol for Multi-core Systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.The challenge of mixed-criticality scheduling is to keep tasks of higher criticality running in case of resource shortages caused by faults. Traditionally, mixedcriticality scheduling has focused on methods to handle faults where tasks overrun their optimistic worst-case execution time (WCET) estimate. In this paper we present the Adaptive Tolerance based Mixed-criticality Protocol (ATMP), which generalises the concept of mixed-criticality scheduling to handle also faults of other nature, like failure of cores in a multi-core system. ATMP is an adaptation method triggered by resource shortage at runtime. The first step of ATMP is to re-partition the task to the available cores and the second step is to optimise the utility at each core using the tolerance-based real-time computing model (TRTCM). The evaluation shows that the utility optimisation of ATMP can achieve a smoother degradation of service compared to just abandoning tasks

    Design and Analysis of Multi-Core Architecture for Cyber-Physical Systems

    Get PDF
    International audienceCyber-Physical Systems are becoming software intensive, collocating many functions on a single processor and requiring a significant processing capacity which increased over the years. In recent years, improving processing performance has been achieved by adding more processing cores on the same chip rather than increasing its frequency. This new design also introduces issues: interaction among cores may impact software performance and might also arm software isolation layers, such as the one defined in ARINC653. For that reason, software using multi-core architecture must be carefully designed and specified with hardware and software aspects. This would help to analyze the system and detect potential design issue. This paper proposes an approach to represent multi-core architectures and their association with software ar-tifacts, such as the ones used for cyber-physical systems (e.g., the ARINC653 platform). For that purpose, we use the AADL language and define specific modeling patterns with new properties

    Concurrency Platforms for Real-Time and Cyber-Physical Systems

    Get PDF
    Parallel processing is an important way to satisfy the increasingly demanding computational needs of modern real-time and cyber-physical systems, but existing parallel computing technologies primarily emphasize high-throughput and average-case performance metrics, which are largely unsuitable for direct application to real-time, safety-critical contexts. This work contrasts two concurrency platforms designed to achieve predictable worst case parallel performance for soft real-time workloads with millisecond periods and higher. One of these is then the basis for the CyberMech platform, which enables parallel real-time computing for a novel yet representative application called Real-Time Hybrid Simulation (RTHS). RTHS combines demanding parallel real-time computation with real-time simulation and control in an earthquake engineering laboratory environment, and results concerning RTHS characterize a reasonably comprehensive survey of parallel real-time computing in the static context, where the size, shape, timing constraints, and computational requirements of workloads are fixed prior to system runtime. Collectively, these contributions constitute the first published implementations and evaluations of general-purpose concurrency platforms for real-time and cyber-physical systems, explore two fundamentally different design spaces for such systems, and successfully demonstrate the utility and tradeoffs of parallel computing for statically determined real-time and cyber-physical systems

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards
    • …
    corecore