4,802 research outputs found

    Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System

    Full text link
    Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10 000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate.Comment: 8 pages, 10 figures, submitted to IJCNN 201

    Linear-Combined-Code-Based Unambiguous Code Discriminator Design for Multipath Mitigation in GNSS Receivers

    Get PDF
    Unambiguous tracking and multipath mitigation for Binary Offset Carrier (BOC) signals are two important requirements of modern Global Navigation Satellite Systems (GNSS) receivers. A GNSS discriminator design method based on optimization technique is proposed in this paper to meet these requirements. Firstly, the discriminator structure based on a linear-combined code is given. Then the requirements of ideal discriminator function are converted into the mathematical constraints and the objective function to form a non-linear optimization problem. Finally, the problem is solved and the local code is generated according to the results. The theoretical analysis and simulation results indicate that the proposed method can completely remove the false lock points for BOC signals and provide superior multipath mitigation performance compared with traditional discriminator and high revolution correlator (HRC) technique. Moreover, the proposed discriminator is easy to implement for not increasing the number of correlators

    Compressed Passive Macromodeling

    Get PDF
    This paper presents an approach for the extraction of passive macromodels of large-scale interconnects from their frequency-domain scattering responses. Here, large scale is intended both in terms of number of electrical ports and required dynamic model order. For such structures, standard approaches based on rational approximation via vector fitting and passivity enforcement via model perturbation may fail because of excessive computational requirements, both in terms of memory size and runtime. Our approach addresses this complexity by first reducing the redundancy in the raw scattering responses through a projection and approximation process based on a truncated singular value decomposition. Then we formulate a compressed rational fitting and passivity enforcement framework which is able to obtain speedup factors up to 2 and 3 orders of magnitude with respect to standard approaches, with full control over the approximation errors. Numerical results on a large set of benchmark cases demonstrate the effectiveness of the proposed techniqu

    Design and Implementation of Control Techniques of Power Electronic Interfaces for Photovoltaic Power Systems

    Get PDF
    The aim of this thesis is to scrutinize and develop four state-of-the-art power electronics converter control techniques utilized in various photovoltaic (PV) power conversion schemes accounting for maximum power extraction and efficiency. First, Cascade Proportional and Integral (PI) Controller-Based Robust Model Reference Adaptive Control (MRAC) of a DC-DC boost converter has been designed and investigated. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control systemā€™s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection. Second, (P)roportional Gain (R)esonant and Gain Scheduled (P)roportional (PR-P) Controller has been designed and investigated. The aim of this controller is to create a variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm. The proposed control scheme resolved the drawbacks of conventional P&O MPPT method associated with the use of constant perturbation size that leads to a poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controllerā€™s resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in a P&O algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.Third, the interleaved buck converter based photovoltaic (PV) emulator current control has been investigated. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancellation in the presence of parameter uncertainties. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multi-phase converters has been achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. Fourth, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller has been designed and investigated. The proposed PR-P controller resolved the issues associated with the use of the PI controller which are tracking repeating control input signal with zero steady-state and mitigating the 3rd order harmonic component injected into the grid for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller. Moreover, the unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system. The verification and validation process of the proposed control schemes has been conducted using MATLAB/Simulink and implementing MATLAB/Simulink/State flow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 High-Speed A/D and CP4002 Timing and Digital I/O boards

    Design and Cascade PI Controller-Based Robust Model Reference Adaptive Control of DC-DC Boost Converter

    Get PDF
    In this paper, Cascade PI Controller-Based Robust Model Reference Adaptive Control (MRAC)of a DC-DC boost converter is presented. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control systemā€™s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified using MATLAB/Simulink by applying comparative analysis with single PI and cascade PI controllers. Moreover, performance of the proposed control scheme is validated experimentally with the implementation of MATLAB/Simulink/Stateflow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 HighSpeed A/D and CP4002 Timing and Digital I/O boards. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection
    • ā€¦
    corecore