4,565 research outputs found

    Systemdienstleistungserbringung durch intelligente Gebäude

    Get PDF
    Within the ongoing transition of energy systems, new technologies are integrated into electrical distribution systems—e. g. distributed generation, electrical storage, electric vehicles and automated building energy management—which transform buildings into actively participating components inside the grid. This thesis analyses the influences of those intelligent buildings’ capabilities of optimizing their in-house energy flows on low-voltage grids and discusses the usability of those capabilities to provide system services. In order to minimize the limitations which arise for the economic acting on energy markets for the inhabitants of such buildings, the traffic light concept is shaped as an approach to provide necessary needed system services. Firstly, a technical traffic light is introduced to determine critical situations in the grid. Secondly, a topological traffic light identifies active components that can reasonably participate in the clearance of a critical situation. Thirdly, aspects of coordination by the traffic light are tackled by a closed-loop feedback mechanism that controls utility equipment and intelligent buildings by utilizing a two-staged mechanism for demand response. The three parts of the proposed traffic light approach are implemented in a Regional Energy Management System that utilizes a proposed Extended Generic Observer/Controller-Architecture. For a close-to-reality evaluation three reference grids for a rural, village, and suburban residential low voltage grid are derived from literature as well as three scenarios for the distribution of active components. In particular distributed generation, electrical storage and electric vehicles. The simulation of intelligent buildings, utility equipment, and the low voltage grid as well as the Regional Energy Management System are implemented in a Co-Simulation environment that extends the Organic Smart Home to a microgrid simulation. Furthermore, this simulation is extended towards a Software-in-a-Hardware-Loop-Environment comprising the Co-Simulation and the KIT Energy Smart Home Lab as a real intelligent building, to comply with the necessity of evaluating the Regional Energy Management System with real hardware. Here, a loose coupling of software and hardware components is established by using event-based communication schemes utilizing a message bus and an artificial mains is used to align the environmental conditions between simulation and real building. The capabilities of the Regional Energy Management System to stabilize low voltage systems, especially in future scenarios, are investigated in simulation studies and its operation is successfully demonstrated in the presented Software-in-a-Hardware-Loop-Environment during a six-day test phase in the real intelligent building

    Experimental Test bed to De-Risk the Navy Advanced Development Model

    Get PDF
    This paper presents a reduced scale demonstration test-bed at the University of Texas’ Center for Electromechanics (UT-CEM) which is well equipped to support the development and assessment of the anticipated Navy Advanced Development Model (ADM). The subscale ADM test bed builds on collaborative power management experiments conducted as part of the Swampworks Program under the US/UK Project Arrangement as well as non-military applications. The system includes the required variety of sources, loads, and controllers as well as an Opal-RT digital simulator. The test bed architecture is described and the range of investigations that can be carried out on it is highlighted; results of preliminary system simulations and some initial tests are also provided. Subscale ADM experiments conducted on the UT-CEM microgrid can be an important step in the realization of a full-voltage, full-power ADM three-zone demonstrator, providing a test-bed for components, subsystems, controls, and the overall performance of the Medium Voltage Direct Current (MVDC) ship architecture.Center for Electromechanic

    A review of PHIL testing for smart grids—selection guide, classification and online database analysis

    Get PDF
    The Smart Grid is one of the most important solutions to boost electricity sharing from renewable energy sources. Its implementation adds new functionalities to power systems, which increases the electric grid complexity. To ensure grid stability and security, systems need flexible methods in order to be tested in a safe and economical way. A promising test technique is Power Hardware In-the-Loop (PHIL), which combines the flexibility of Hardware-In-the-Loop (HIL) technique with power exchange. However, the acquisition of PHIL components usually represents a great expense for laboratories and, therefore, the setting up of the experiment involves making hard decisions. This paper provides a complete guideline and useful new tools for laboratories in order to set PHIL facilities up efficiently. First, a PHIL system selection guide is presented, which describes the selection process steps and the main system characteristics needed to perform a PHIL test. Furthermore, a classification proposal containing the desirable information to be obtained from a PHIL test paper for reproducibility purposes is given. Finally, this classification was used to develop a PHIL test online database, which was analysed, and the main gathered information with some use cases and conclusions are shown

    A Viable Residential DC Microgrid for Low Income Communities – Architecture, Protection and Education

    Get PDF
    The availability of fossil fuels in the future and the environmental effects such as the carbon footprint of the existing methodologies to produce electricity is an increasing area of concern. In rural areas of under-developed parts of the world, the problem is lack of access to electrification. DC microgrids have become a proven solution to electrification in these areas with demonstrated exceptional quality of power, high reliability, efficiency, and simplified integration between renewable energy sources (principally solar PV) and energy storage. In the United States, a different problem occurs that can be addressed with the same DC microgrid approach that is finding success internationally. In disinvested, underserved communities with high unemployment and low wages, households contribute a significant portion of their income towards the fixed cost of their electrical utility connection, which by law must be supplied to every household. In order to realize such a microgrid in these communities, there are three major areas which need to be accounted for. Firstly, there needs to be a custom architecture for the community under consideration and it needs to be economical to match the needs of the underserved community. Secondly, DC microgrid for home energy interconnection is potentially less complex and less expensive to deploy, operate and maintain however, faster protection is a key element to ensuring resilience, viability and adoptability. Lastly, these types of efforts will be sustainable only if the people in the community are educated and invested in the same as they are the key stakeholders in these systems. This dissertation presents an approach to make the DC Microgrid economically feasible for low income households by reducing the cost they incur on electric bills. The approach is to overlay a DC system into homes that have a utility feed in order to incorporate renewable energy usage into an urban setting for the express purpose of driving down individual household utility costs. The results show that the incorporation of a certain level of “smart” appliances and fixtures into the renovation of vacated homes and the use of a microgrid to enable sharing of renewable energy, such as solar power combined with energy storage, between homes in the proposed architecture yields the least expensive option for the patrons. The development of solid state circuit breakers that interface between the microgrid and the home DC power panels helps in faster protection of the DC system. In this dissertation, a SiC JFET based device is designed and built to protect against DC faults at a faster rate than the available solutions. The prototype is tested for verification and used to discriminate against short circuit faults and the results show the successful fault discrimination capabilities of the device. A basic system level simulation with the protection device is implemented using Real Time Hardware in the loop platform. Finally, as a part of engaging the community members, the high school kids in the area who might potentially be living in some of the houses in this community are being educated about the microgrid, appliances and other technologies to get a better understanding of STEM and hopefully inspiring them to pursue a career in STEM in the future
    • …
    corecore