569 research outputs found

    Hardware-Assisted Point-Based Volume Rendering of Tetrahedral Meshes

    Get PDF

    Direct volume rendering of unstructured tetrahedral meshes using CUDA and OpenMP

    Get PDF
    Cataloged from PDF version of article.Direct volume visualization is an important method in many areas, including computational fluid dynamics and medicine. Achieving interactive rates for direct volume rendering of large unstructured volumetric grids is a challenging problem, but parallelizing direct volume rendering algorithms can help achieve this goal. Using Compute Unified Device Architecture (CUDA), we propose a GPU-based volume rendering algorithm that itself is based on a cell projection-based ray-casting algorithm designed for CPU implementations. We also propose a multicore parallelized version of the cell-projection algorithm using OpenMP. In both algorithms, we favor image quality over rendering speed. Our algorithm has a low memory footprint, allowing us to render large datasets. Our algorithm supports progressive rendering. We compared the GPU implementation with the serial and multicore implementations. We observed significant speed-ups that, together with progressive rendering, enables reaching interactive rates for large datasets

    Doctor of Philosophy

    Get PDF
    dissertationDataflow pipeline models are widely used in visualization systems. Despite recent advancements in parallel architecture, most systems still support only a single CPU or a small collection of CPUs such as a SMP workstation. Even for systems that are specifically tuned towards parallel visualization, their execution models only provide support for data-parallelism while ignoring taskparallelism and pipeline-parallelism. With the recent popularization of machines equipped with multicore CPUs and multi-GPU units, these visualization systems are undoubtedly falling further behind in reaching maximum efficiency. On the other hand, there exist several libraries that can schedule program executions on multiple CPUs and/or multiple GPUs. However, due to differences in executing a task graph and a pipeline along with their APIs being considerably low-level, it still remains a challenge to integrate these run-time libraries into current visualization systems. Thus, there is a need for a redesigned dataflow architecture to fully support and exploit the power of highly parallel machines in large-scale visualization. The new design must be able to schedule executions on heterogeneous platforms while at the same time supporting arbitrarily large datasets through the use of streaming data structures. The primary goal of this dissertation work is to develop a parallel dataflow architecture for streaming large-scale visualizations. The framework includes supports for platforms ranging from multicore processors to clusters consisting of thousands CPUs and GPUs. We achieve this in our system by introducing the notion of Virtual Processing Elements and Task-Oriented Modules along with a highly customizable scheduler that controls the assignment of tasks to elements dynamically. This creates an intuitive way to maintain multiple CPU/GPU kernels yet still provide coherency and synchronization across module executions. We have implemented these techniques into HyperFlow which is made of an API with all basic dataflow constructs described in the dissertation, and a distributed run-time library that can be used to deploy those pipelines on multicore, multi-GPU and cluster-based platforms

    Image-space visibility ordering for cell projection volume rendering of unstructured data

    Full text link

    MaterialVis: Material visualization tool using direct volume and surface rendering techniques

    Get PDF
    Cataloged from PDF version of article.Visualization of the materials is an indispensable part of their structural analysis. We developed a visualization tool for amorphous as well as crystalline structures, called Material Vis. Unlike the existing tools, Material Vis represents material structures as a volume and a surface manifold, in addition to plain atomic coordinates. Both amorphous and crystalline structures exhibit topological features as well as various defects. Material Vis provides a wide range of functionality to visualize such topological structures and crystal defects interactively. Direct volume rendering techniques are used to visualize the volumetric features of materials, such as crystal defects, which are responsible for the distinct fingerprints of a specific sample. In addition, the tool provides surface visualization to extract hidden topological features within the material. Together with the rich set of parameters and options to control the visualization, Material Vis allows users to visualize various aspects of materials very efficiently as generated by modern analytical techniques such as the Atom Probe Tomography. (C) 2014 Elsevier Inc. All rights reserved

    Interactive isosurface ray tracing of time-varying tetrahedral volumes

    Get PDF
    Journal ArticleAbstract- We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes

    Volumetric real-time particle-based representation of large unstructured tetrahedral polygon meshes

    No full text
    In this paper we propose a particle-based volume rendering approach for unstructured, three-dimensional, tetrahedral polygon meshes. We stochastically generate millions of particles per second and project them on the screen in real-time. In contrast to previous rendering techniques of tetrahedral volume meshes, our method does not need a prior depth sorting of geometry. Instead, the rendered image is generated by choosing particles closest to the camera. Furthermore, we use spatial superimposing. Each pixel is constructed from multiple subpixels. This approach not only increases projection accuracy, but allows also a combination of subpixels into one superpixel that creates the well-known translucency effect of volume rendering. We show that our method is fast enough for the visualization of unstructured three-dimensional grids with hard real-time constraints and that it scales well for a high number of particles
    corecore