5,572 research outputs found

    Intelligent intrusion detection in low power IoTs

    Get PDF

    LO-FAT: Low-Overhead Control Flow ATtestation in Hardware

    Full text link
    Attacks targeting software on embedded systems are becoming increasingly prevalent. Remote attestation is a mechanism that allows establishing trust in embedded devices. However, existing attestation schemes are either static and cannot detect control-flow attacks, or require instrumentation of software incurring high performance overheads. To overcome these limitations, we present LO-FAT, the first practical hardware-based approach to control-flow attestation. By leveraging existing processor hardware features and commonly-used IP blocks, our approach enables efficient control-flow attestation without requiring software instrumentation. We show that our proof-of-concept implementation based on a RISC-V SoC incurs no processor stalls and requires reasonable area overhead.Comment: Authors' pre-print version to appear in DAC 2017 proceeding

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks
    • …
    corecore