16,684 research outputs found

    HARDWARE-ACCELERATED AUTOMATIC 3D NONRIGID IMAGE REGISTRATION

    Get PDF
    Software implementations of 3D nonrigid image registration, an essential tool in medical applications like radiotherapies and image-guided surgeries, run excessively slow on traditional computers. These algorithms can be accelerated using hardware methods by exploiting parallelism at different levels in the algorithm. We present here, an implementation of a free-form deformation-based algorithm on a field programmable gate array (FPGA) with a customized, parallel and pipelined architecture. We overcome the performance bottlenecks and gain speedups of up to 40x over traditional computers while achieving accuracies comparable to software implementations. In this work, we also present a method to optimize the deformation field using a gradient descent-based optimization scheme and solve the problem of mesh folding, commonly encountered during registration using free-form deformations, using a set of linear constraints. Finally, we present the use of novel dataflow modeling tools to automatically map registration algorithms to hardware like FPGAs while allowing for dynamic reconfiguration

    A multisensing setup for the intelligent tire monitoring

    Get PDF
    The present paper offers the chance to experimentally measure, for the first time, the internal tire strain by optical fiber sensors during the tire rolling in real operating conditions. The phenomena that take place during the tire rolling are in fact far from being completely understood. Despite several models available in the technical literature, there is not a correspondently large set of experimental observations. The paper includes the detailed description of the new multi-sensing technology for an ongoing vehicle measurement, which the research group has developed in the context of the project OPTYRE. The experimental apparatus is mainly based on the use of optical fibers with embedded Fiber Bragg Gratings sensors for the acquisition of the circumferential tire strain. Other sensors are also installed on the tire, such as a phonic wheel, a uniaxial accelerometer, and a dynamic temperature sensor. The acquired information is used as input variables in dedicated algorithms that allow the identification of key parameters, such as the dynamic contact patch, instantaneous dissipation and instantaneous grip. The OPTYRE project brings a contribution into the field of experimental grip monitoring of wheeled vehicles, with implications both on passive and active safety characteristics of cars and motorbikes

    Creep monitoring using permanently installed potential drop sensors

    Get PDF
    Creep is the primary life limiting mechanism of static high temperature, high pressure power station components. Creep state evaluation is currently achieved by surface inspection of microstructure during infrequent outages; a methodology which is laborious, time consuming and considered inadequate. The objective of this work is to develop a monitoring technique that is capable of on-load creep damage monitoring. A continuous update of component integrity will enable better informed, targeted inspections and outage maintenance providing increased power generation availability. A low-frequency, permanently installed potential drop system has been previously developed and will be the focus of this thesis. The use of a quasi-DC inspection frequency suppresses the influence of the electromagnetic skin effect that would otherwise undermine the stability of the measurement in the ferromagnetic materials of interest; the use of even low frequency measurements allows phase sensitive detection and greatly enhanced noise performance. By permanently installing the electrodes to the surface of the component the resistance measurement is sensitive to strain. A resistance - strain inversion is derived and validated experimentally; the use of the potential drop sensor as a robust, high temperature strain gauge is therefore demonstrated. The strain rate of a component is known to be an expression of the creep state of the component. This concept was adopted to develop an interpretive framework for inferring the creep state of a component. It is possible to monitor the accumulation of creep damage through the symptomatic relative increase in strain rate. By taking the ratio of two orthogonal strain measurements, instability and drift common to both measurements can be effectively eliminated; an important attribute considering the necessity to monitor very low strain rates over decades in time in a harsh environment. A preliminary study of using the potential drop technique for monitoring creep damage at a weld has been conducted. Welds provide a site for preferential creep damage accumulation and therefore will frequently be the life limiting feature of power station components. The potential drop technique will be sensitive to both the localised strain that is understood to act as precursor to creep damage at a weld and also the initiation and growth of a crack. Through the course of this project, two site trials have been conducted in power stations. A measurement system and high temperature hardware that is suitable for the power station environment has been developed. The focus of this thesis is the effective transfer of the technique to industry; the realisation of this is detailed in the final chapter.Open Acces

    GPU acceleration of brain image proccessing

    Get PDF
    Durante los últimos años se ha venido demostrando el alto poder computacional que ofrecen las GPUs a la hora de resolver determinados problemas. Al mismo tiempo, existen campos en los que no es posible beneficiarse completamente de las mejoras conseguidas por los investigadores, debido principalmente a que los tiempos de ejecución de las aplicaciones llegan a ser extremadamente largos. Este es por ejemplo el caso del registro de imágenes en medicina. A pesar de que se han conseguido aceleraciones sobre el registro de imágenes, su uso en la práctica clínica es aún limitado. Entre otras cosas, esto se debe al rendimiento conseguido. Por lo tanto se plantea como objetivo de este proyecto, conseguir mejorar los tiempos de ejecución de una aplicación dedicada al resgitro de imágenes en medicina, con el fin de ayudar a aliviar este problema

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft
    • …
    corecore