59 research outputs found

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    Experience in programming device drivers with the Ravenscar profile.

    Get PDF
    The Ravenscar profile defines a subset of Ada tasking that can be statically analysable for real-time properties. The implications of the Ravenscar profile and other commonly used high-integrity restrictions for developing device drivers are analysed in the paper, and some guidelines are provided based on the analysis. The technical content of the paper is based on the authors' experience in developing communication drivers for the Open Ravenscar real time Kernel (ORK) that are well suited for space onboard applications. A reference architecture for device drivers is proposed, and two instances of drivers based on it are described

    ARINC-653 Inter-partition communications and the ravenscar profile

    Full text link
    The ARINC-653 standard is often used to build mixed-criticality systems, using a partitioned architecture. Inter-partition communication is carried out by means of a message-passing mechanism based on ports. The standard includes an API for Ada, but the implementation semantics of operation ports is not fully defined. Furthermore, the API was defined for the Ada 95 standard, and therefore does not take into account the enhancements to the real-time features of the language that have been incorporated in the 2005 and 2013 standards, most notably the Ravenscar profile. This paper is aimed at clarifying the implementation of ARINC communication ports in Ada and the Ravenscar profile. ARINC communication ports are analysed, and their compatibility with the Ravenscar profile is assessed. A new API that can be used with the profile is defined, and a pilot implementation is introduced

    On real-time partitioned multicore systems

    Get PDF
    Partitioning is a common approach to developing mixed-criticality systems, where partitions are isolated from each other both in the temporal and the spatial domain in order to prevent low-criticality subsystems from compromising other subsystems with high level of criticality in case of misbehaviour. The advent of many-core processors, on the other hand, opens the way to highly parallel systems in which all partitions can be allocated to dedicated processor cores. This trend will simplify processor scheduling, although other issues such as mutual interference in the temporal domain may arise as a consequence of memory and device sharing. The paper describes an architecture for multi-core partitioned systems including critical subsystems built with the Ada Ravenscar profile. Some implementation issues are discussed, and experience on implementing the ORK kernel on the XtratuM partitioning hypervisor is presented

    The ASSERT Virtual Machine Kernel: Support for preservation of temporal properties.

    Get PDF
    The ASSERT Project1 is aimed at defining new software engineering methods and tools for the development of critical embedded real-time systems in the aerospace domain. One of its main achievements is a new model-driven software process, which is based on the concept of property-preserving model transformations. Functional models developed with appropriate tools for the application domain are embedded in containers defining component interfaces and non-functional (e.g. timing) properties in a platform-independent set of notations. The resulting model is then automatically transformed to a platform-specific model using deployment information on target computer nodes, communication channels, and software platforms. Finally, source code for each computer node is automatically generated from the platform-specific model. The key element of the ASSERT process is that non-functional properties must be preserved during all phases of model transformations. In order to ensure that properties are preserved in model transformations and that the different views of each model are consistent with each other, a common meta-model has been defined which provides a formal basis to the whole process. This meta-model is called the Ravenscar Computational Model (RCM)

    Ada User Guide for LEGO MINDSTORMS NXT

    Get PDF
    The purpose of this guide is to introduce the robotics kit LEGO MINDSTORMS NXT to the Ada community. All the steps required to complete a working Ada application running under the LEGO MINDSTORMS NXT are covered.

    In support of extending the Ravenscar profile

    Get PDF
    This paper discusses different approaches for implementing an EEPROM memory driver which is part of the UPMSat2 satellite on-board computer software. The Ravenscar profile restrictions are to be observed in order to ensure the analysability of the system, and therefore the approaches are evaluated against the profile. Results of this evaluation as well as considerations on a possible extension of the Ravenscar profile with respect protected entries are presented

    Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP

    Get PDF
    There is a growing need to support parallel computation in Ada to cope with the performance requirements of the most advanced functionalities of safety-critical systems. In that regard, the use of parallel programming models is paramount to exploit the benefits of parallelism. Recent works motivate the use of OpenMP for being a de facto standard in high-performance computing for programming shared memory architectures. These works address two important aspects towards the introduction of OpenMP in Ada: the compatibility of the OpenMP syntax with the Ada language, and the interoperability of the OpenMP and the Ada runtimes, demonstrating that OpenMP complements and supports the structured parallelism approach of the tasklet model. This paper addresses a third fundamental aspect: functional safety from a compiler perspective. Particularly, it focuses on race conditions and considers the fine-grain and unstructured capabilities of OpenMP. Hereof, this paper presents a new compiler analysis technique that: (1) identifies potential race conditions in parallel Ada programs based on OpenMP or Ada tasks or both, and (2) provides solutions for the detected races.This work was supported by the Spanish Ministry of Science and Innovation under contract TIN2015-65316-P, and by the FCT (Portuguese Foundation for Science and Technology) within the CISTER Research Unit (CEC/04234).Peer ReviewedPostprint (author's final draft

    Precise response time analysis for Ravenscar kernels

    Get PDF
    corecore