9,853 research outputs found

    Transport of video over partial order connections

    Get PDF
    A Partial Order and partial reliable Connection (POC) is an end-to-end transport connection authorized to deliver objects in an order that can differ from the transmitted one. Such a connection is also authorized to lose some objects. The POC concept is motivated by the fact that heterogeneous best-effort networks such as Internet are plagued by unordered delivery of packets and losses, which tax the performances of current applications and protocols. It has been shown, in several research works, that out of order delivery is able to alleviate (with respect to CO service) the use of end systems’ communication resources. In this paper, the efficiency of out-of-sequence delivery on MPEG video streams processing is studied. Firstly, the transport constraints (in terms of order and reliability) that can be relaxed by MPEG video decoders, for improving video transport, are detailed. Then, we analyze the performance gain induced by this approach in terms of blocking times and recovered errors. We demonstrate that POC connections fill not only the conceptual gap between TCP and UDP but also provide real performance improvements for the transport of multimedia streams such MPEG video

    Hardware acceleration architectures for MPEG-Based mobile video platforms: a brief overview

    Get PDF
    This paper presents a brief overview of past and current hardware acceleration (HwA) approaches that have been proposed for the most computationally intensive compression tools of the MPEG-4 standard. These approaches are classified based on their historical evolution and architectural approach. An analysis of both evolutionary and functional classifications is carried out in order to speculate on the possible trends of the HwA architectures to be employed in mobile video platforms

    A Rectangular Area Filling Display System Architecture

    Get PDF
    A display system architecture which has rectangular area filling as its primitive operation is presented. It is shown that lines can be drawn significantly faster while rendition of filled boxes shows an O(n^2) speed improvement. Furthermore filled polygons can be rendered with an O(n) speed improvement. Implementation of this rectangular area filling architecture is discussed and refined. A custom VLSI integrated circuit is currently being designed to implement this rectangular area filling architecture and at the same time reduce the display memory system video refresh bandwidth requirements

    Complexity Analysis Of Next-Generation VVC Encoding and Decoding

    Full text link
    While the next generation video compression standard, Versatile Video Coding (VVC), provides a superior compression efficiency, its computational complexity dramatically increases. This paper thoroughly analyzes this complexity for both encoder and decoder of VVC Test Model 6, by quantifying the complexity break-down for each coding tool and measuring the complexity and memory requirements for VVC encoding/decoding. These extensive analyses are performed for six video sequences of 720p, 1080p, and 2160p, under Low-Delay (LD), Random-Access (RA), and All-Intra (AI) conditions (a total of 320 encoding/decoding). Results indicate that the VVC encoder and decoder are 5x and 1.5x more complex compared to HEVC in LD, and 31x and 1.8x in AI, respectively. Detailed analysis of coding tools reveals that in LD on average, motion estimation tools with 53%, transformation and quantization with 22%, and entropy coding with 7% dominate the encoding complexity. In decoding, loop filters with 30%, motion compensation with 20%, and entropy decoding with 16%, are the most complex modules. Moreover, the required memory bandwidth for VVC encoding/decoding are measured through memory profiling, which are 30x and 3x of HEVC. The reported results and insights are a guide for future research and implementations of energy-efficient VVC encoder/decoder.Comment: IEEE ICIP 202
    corecore