7 research outputs found

    WAVEFORM AND TRANSCEIVER OPTIMIZATION FOR MULTI-FUNCTIONAL AIRBORNE RADAR THROUGH ADAPTIVE PROCESSING

    Get PDF
    Pulse compression techniques have been widely used for target detection and remote sensing. The primary concern for pulse compression is the sidelobe interference. Waveform design is an important method to improve the sidelobe performance. As a multi-functional aircraft platform in aviation safety domain, ADS-B system performs functions involving detection, localization and alerting of external traffic. In this work, a binary phase modulation is introduced to convert the original 1090 MHz ADS-B signal waveform into a radar signal. Both the statistical and deterministic models of new waveform are developed and analyzed. The waveform characterization, optimization and its application are studied in details. An alternative way to achieve low sidelobe levels without trading o range resolution and SNR is the adaptive pulse compression - RMMSE (Reiterative Minimum Mean-Square error). Theoretically, RMMSE is able to suppress the sidelobe level down to the receiver noise floor. However, the application of RMMSE to actual radars and the related implementation issues have not been investigated before. In this work, implementation aspects of RMMSE such as waveform sensitivity, noise immunity and computational complexity are addressed. Results generated by applying RMMSE to both simulated and measured radar data are presented and analyzed. Furthermore, a two-dimensional RMMSE algorithm is derived to mitigate the sidelobe effects from both pulse compression processing and antenna radiation pattern. In addition, to achieve even better control of the sidelobe level, a joint transmit and receive optimization scheme (JTRO) is proposed, which reduces the impacts of HPA nonlinearity and receiver distortion. Experiment results obtained with a Ku-band spaceborne radar transceiver testbed are presented

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Reservoir Computing in Materio

    Get PDF
    Reservoir Computing first emerged as an efficient mechanism for training recurrent neural networks and later evolved into a general theoretical model for dynamical systems. By applying only a simple training mechanism many physical systems have become exploitable unconventional computers. However, at present, many of these systems require careful selection and tuning by hand to produce usable or optimal reservoir computers. In this thesis we show the first steps to applying the reservoir model as a simple computational layer to extract exploitable information from complex material substrates. We argue that many physical substrates, even systems that in their natural state might not form usable or "good" reservoirs, can be configured into working reservoirs given some stimulation. To achieve this we apply techniques from evolution in materio whereby configuration is through evolved input-output signal mappings and targeted stimuli. In preliminary experiments the combined model and configuration method is applied to carbon nanotube/polymer composites. The results show substrates can be configured and trained as reservoir computers of varying quality. It is shown that applying the reservoir model adds greater functionality and programmability to physical substrates, without sacrificing performance. Next, the weaknesses of the technique are addressed, with the creation of new high input-output hardware system and an alternative multi-substrate framework. Lastly, a substantial effort is put into characterising the quality of a substrate for reservoir computing, i.e its ability to realise many reservoirs. From this, a methodological framework is devised. Using the framework, radically different computing substrates are compared and assessed, something previously not possible. As a result, a new understanding of the relationships between substrate, tasks and properties is possible, outlining the way for future exploration and optimisation of new computing substrates

    Lossy Polynomial Datapath Synthesis

    No full text
    The design of the compute elements of hardware, its datapath, plays a crucial role in determining the speed, area and power consumption of a device. The building blocks of datapath are polynomial in nature. Research into the implementation of adders and multipliers has a long history and developments in this area will continue. Despite such efficient building block implementations, correctly determining the necessary precision of each building block within a design is a challenge. It is typical that standard or uniform precisions are chosen, such as the IEEE floating point precisions. The hardware quality of the datapath is inextricably linked to the precisions of which it is composed. There is, however, another essential element that determines hardware quality, namely that of the accuracy of the components. If one were to implement each of the official IEEE rounding modes, significant differences in hardware quality would be found. But in the same fashion that standard precisions may be unnecessarily chosen, it is typical that components may be constructed to return one of these correctly rounded results, where in fact such accuracy is far from necessary. Unfortunately if a lesser accuracy is permissible then the techniques that exist to reduce hardware implementation cost by exploiting such freedom invariably produce an error with extremely difficult to determine properties. This thesis addresses the problem of how to construct hardware to efficiently implement fixed and floating-point polynomials while exploiting a global error freedom. This is a form of lossy synthesis. The fixed-point contributions include resource minimisation when implementing mutually exclusive polynomials, the construction of minimal lossy components with guaranteed worst case error and a technique for efficient composition of such components. Contributions are also made to how a floating-point polynomial can be implemented with guaranteed relative error.Open Acces

    On the malware detection problem : challenges and novel approaches

    Get PDF
    Orientador: André Ricardo Abed GrégioCoorientador: Paulo Lício de GeusTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba,Inclui referênciasÁrea de concentração: Ciência da ComputaçãoResumo: Software Malicioso (malware) é uma das maiores ameaças aos sistemas computacionais atuais, causando danos à imagem de indivíduos e corporações, portanto requerendo o desenvolvimento de soluções de detecção para prevenir que exemplares de malware causem danos e para permitir o uso seguro dos sistemas. Diversas iniciativas e soluções foram propostas ao longo do tempo para detectar exemplares de malware, de Anti-Vírus (AVs) a sandboxes, mas a detecção de malware de forma efetiva e eficiente ainda se mantém como um problema em aberto. Portanto, neste trabalho, me proponho a investigar alguns desafios, falácias e consequências das pesquisas em detecção de malware de modo a contribuir para o aumento da capacidade de detecção das soluções de segurança. Mais especificamente, proponho uma nova abordagem para o desenvolvimento de experimentos com malware de modo prático mas ainda científico e utilizo-me desta abordagem para investigar quatro questões relacionadas a pesquisa em detecção de malware: (i) a necessidade de se entender o contexto das infecções para permitir a detecção de ameaças em diferentes cenários; (ii) a necessidade de se desenvolver melhores métricas para a avaliação de soluções antivírus; (iii) a viabilidade de soluções com colaboração entre hardware e software para a detecção de malware de forma mais eficiente; (iv) a necessidade de predizer a ocorrência de novas ameaças de modo a permitir a resposta à incidentes de segurança de forma mais rápida.Abstract: Malware is a major threat to most current computer systems, causing image damages and financial losses to individuals and corporations, thus requiring the development of detection solutions to prevent malware to cause harm and allow safe computers usage. Many initiatives and solutions to detect malware have been proposed over time, from AntiViruses (AVs) to sandboxes, but effective and efficient malware detection remains as a still open problem. Therefore, in this work, I propose taking a look on some malware detection challenges, pitfalls and consequences to contribute towards increasing malware detection system's capabilities. More specifically, I propose a new approach to tackle malware research experiments in a practical but still scientific manner and leverage this approach to investigate four issues: (i) the need for understanding context to allow proper detection of localized threats; (ii) the need for developing better metrics for AV solutions evaluation; (iii) the feasibility of leveraging hardware-software collaboration for efficient AV implementation; and (iv) the need for predicting future threats to allow faster incident responses

    Hardware implementation of KLMS algorithm using FPGA

    No full text
    corecore