15 research outputs found

    New memory-efficient hardware architecture of 2-D dual-mode lifting-based discrete wavelet transform for JPEG2000

    Get PDF
    [[abstract]]This work presents new algorithms and hardware architectures to improve the critical issues of the 2-D dual-mode (supporting 5/3 lossless and 9/7 lossy coding) lifting-based discrete wavelet transform (LDWT). The proposed 2-D dual-mode LDWT architecture has the advantages of low-transpose memory, low latency, and regular signal flow, which is suitable for VLSI implementation. The transpose memory requirement of the N ?? N 2-D 5/3 mode LDWT is 2N, and that of 2-D 9/7 mode LDWT is 4N. According to the comparison results, the proposed hardware architecture surpasses previous architectures in the aspects of lifting-based low-transpose memory size. It can be applied to real-time visual operations such as JPEG2000, MPEG-4 still texture object decoding, and wavelet-based scalable video coding.[[notice]]需補會議日期、性質、主辦單位[[conferencedate]]20081119~2008112

    VLSI Architectures of Lifting-Based Discrete Wavelet Transform

    Get PDF

    Efficient architectures for multidimensional discrete transforms in image and video processing applications

    Get PDF
    PhD ThesisThis thesis introduces new image compression algorithms, their related architectures and data transforms architectures. The proposed architectures consider the current hardware architectures concerns, such as power consumption, hardware usage, memory requirement, computation time and output accuracy. These concerns and problems are crucial in multidimensional image and video processing applications. This research is divided into three image and video processing related topics: low complexity non-transform-based image compression algorithms and their architectures, architectures for multidimensional Discrete Cosine Transform (DCT); and architectures for multidimensional Discrete Wavelet Transform (DWT). The proposed architectures are parameterised in terms of wordlength, pipelining and input data size. Taking such parameterisation into account, efficient non-transform based and low complexity image compression algorithms for better rate distortion performance are proposed. The proposed algorithms are based on the Adaptive Quantisation Coding (AQC) algorithm, and they achieve a controllable output bit rate and accuracy by considering the intensity variation of each image block. Their high speed, low hardware usage and low power consumption architectures are also introduced and implemented on Xilinx devices. Furthermore, efficient hardware architectures for multidimensional DCT based on the 1-D DCT Radix-2 and 3-D DCT Vector Radix (3-D DCT VR) fast algorithms have been proposed. These architectures attain fast and accurate 3-D DCT computation and provide high processing speed and power consumption reduction. In addition, this research also introduces two low hardware usage 3-D DCT VR architectures. Such architectures perform the computation of butterfly and post addition stages without using block memory for data transposition, which in turn reduces the hardware usage and improves the performance of the proposed architectures. Moreover, parallel and multiplierless lifting-based architectures for the 1-D, 2-D and 3-D Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) DWT computation are also introduced. The presented architectures represent an efficient multiplierless and low memory requirement CDF 9/7 DWT computation scheme using the separable approach. Furthermore, the proposed architectures have been implemented and tested using Xilinx FPGA devices. The evaluation results have revealed that a speed of up to 315 MHz can be achieved in the proposed AQC-based architectures. Further, a speed of up to 330 MHz and low utilisation rate of 722 to 1235 can be achieved in the proposed 3-D DCT VR architectures. In addition, in the proposed 3-D DWT architecture, the computation time of 3-D DWT for data size of 144×176×8-pixel is less than 0.33 ms. Also, a power consumption of 102 mW at 50 MHz clock frequency using 256×256-pixel frame size is achieved. The accuracy tests for all architectures have revealed that a PSNR of infinite can be attained

    Development of Lifting-based VLSI Architectures for Two-Dimensional Discrete Wavelet Transform

    Get PDF
    Two-dimensional discrete wavelet transform (2-D DWT) has evolved as an essential part of a modem compression system. It offers superior compression with good image quality and overcomes disadvantage of the discrete cosine transform, which suffers from blocks artifacts that reduces the quality of the inage. The amount of computations involve in 2-D DWT is enormous and cannot be processed by generalpurpose processors when real-time processing is required. Th·"efore, high speed and low power VLSI architecture that computes 2-D DWT effectively is needed. In this research, several VLSI architectures have been developed that meets real-time requirements for 2-D DWT applications. This research iaitially started off by implementing a software simulation program that decorrelates the original image and reconstructs the original image from the decorrelated image. Then, based on the information gained from implementing the simulation program, a new approach for designing lifting-based VLSI architectures for 2-D forward DWT is introduced. As a result, two high performance VLSI architectures that perform 2-D DWT for 5/3 and 9/7 filters are developed based on overlapped and nonoverlapped scan methods. Then, the intermediate architecture is developed, which aim a·: reducing the power consumption of the overlapped areas without using the expensive line buffer. In order to best meet real-time applications of 2-D DWT with demanding requirements in terms of speed and throughput parallelism is explored. The single pipelined intermediate and overlapped architectures are extended to 2-, 3-, and 4-parallel architectures to achieve speed factors of 2, 3, and 4, respectively. To further demonstrate the effectiveness of the approach single and para.llel VLSI architectures for 2-D inverse discrete wavelet transform (2-D IDWT) are developed. Furthermore, 2-D DWT memory architectures, which have been overlooked in the literature, are also developed. Finally, to show the architectural models developed for 2-D DWT are simple to control, the control algorithms for 4-parallel architecture based on the first scan method is developed. To validate architectures develcped in this work five architectures are implemented and simulated on Altera FPGA. In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university, Institute of Technology PETRONAS Sdn bhd. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis

    Efficient VLSI Architectures for Image Compression Algorithms

    Get PDF
    An image, in its original form, contains huge amount of data which demands not only large amount of memory requirements for its storage but also causes inconvenient transmission over limited bandwidth channel. Image compression reduces the data from the image in either lossless or lossy way. While lossless image compression retrieves the original image data completely, it provides very low compression. Lossy compression techniques compress the image data in variable amount depending on the quality of image required for its use in particular application area. It is performed in steps such as image transformation, quantization and entropy coding. JPEG is one of the most used image compression standard which uses discrete cosine transform (DCT) to transform the image from spatial to frequency domain. An image contains low visual information in its high frequencies for which heavy quantization can be done in order to reduce the size in the transformed representation. Entropy coding follows to further reduce the redundancy in the transformed and quantized image data. Real-time data processing requires high speed which makes dedicated hardware implementation most preferred choice. The hardware of a system is favored by its lowcost and low-power implementation. These two factors are also the most important requirements for the portable devices running on battery such as digital camera. Image transform requires very high computations and complete image compression system is realized through various intermediate steps between transform and final bit-streams. Intermediate stages require memory to store intermediate results. The cost and power of the design can be reduced both in efficient implementation of transforms and reduction/removal of intermediate stages by employing different techniques. The proposed research work is focused on the efficient hardware implementation of transform based image compression algorithms by optimizing the architecture of the system. Distribute arithmetic (DA) is an efficient approach to implement digital signal processing algorithms. DA is realized by two different ways, one through storage of precomputed values in ROMs and another without ROM requirements. ROM free DA is more efficient. For the image transform, architectures of one dimensional discrete Hartley transform (1-D DHT) and one dimensional DCT (1-D DCT) have been optimized using ROM free DA technique. Further, 2-D separable DHT (SDHT) and 2-D DCT architectures have been implemented in row-column approach using two 1-D DHT and two 1-D DCT respectively. A finite state machine (FSM) based architecture from DCT to quantization has been proposed using the modified quantization matrix in JPEG image compression which requires no memory in storage of quantization table and DCT coefficients. In addition, quantization is realized without use of multipliers that require more area and are power hungry. For the entropy encoding, Huffman coding is hardware efficient than arithmetic coding. The use of Huffman code table further simplifies the implementation. The strategies have been used for the significant reduction of memory bits in storage of Huffman code table and the complete Huffman coding architecture encodes the transformed coefficients one bit per clock cycle. Direct implementation algorithm of DCT has the advantage that it is free of transposition memory to store intermediate 1-D DCT. Although recursive algorithms have been a preferred method, these algorithms have low accuracy resulting in image quality degradation. A non-recursive equation for the direct computation of DCT coefficients have been proposed and implemented in both 0.18 µm ASIC library as well as FPGA. It can compute DCT coefficients in any order and all intermediate computations are free of fractions and hence very high image quality has been obtained in terms of PSNR. In addition, one multiplier and one register bit-width need to be changed for increasing the accuracy resulting in very low hardware overhead. The architecture implementation has been done to obtain zig-zag ordered DCT coefficients. The comparison results show that this implementation has less area in terms of gate counts and less power consumption than the existing DCT implementations. Using this architecture, the complete JPEG image compression system has been implemented which has Huffman coding module, one multiplier and one register as the only additional modules. The intermediate stages (DCT to Huffman encoding) are free of memory, hence efficient architecture is obtained
    corecore