49 research outputs found

    Extremely-Fast, Energy-Efficient Massive MIMO Precoding with Analog RRAM Matrix Computing

    Full text link
    Signal processing in wireless communications, such as precoding, detection, and channel estimation, are basically about solving inverse matrix problems, which, however, are slow and inefficient in conventional digital computers, thus requiring a radical paradigm shift to achieve fast, real-time solutions. Here, for the first time, we apply the emerging analog matrix computing (AMC) to the linear precoding of massive MIMO. The real-valued AMC concept is extended to process complex-valued signals. In order to adapt the MIMO channel models to RRAM conductance mapping, a new matrix inversion circuit is developed. In addition, fully analog dataflow and optimized operational amplifiers are designed to support AMC precoding implementation. Simulation results show that the zero-forcing precoding is solved within 20 ns for a 16x128 MIMO system, which is two orders of magnitude faster than the conventional digital approach. Meanwhile, the energy efficiency is improved by 50x.Comment: Submitted to an IEEE journal for possible publicatio

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Massive MIMO Systems With Low-Resolution ADCs: Baseband Energy Consumption vs. Symbol Detection Performance

    Get PDF
    In massive multiple-input multiple-output (MIMO) systems using a large number of antennas, it would be difficult to connect high-resolution analog-to-digital converters (ADCs) to each antenna component due to high cost and energy consumption problems. To resolve these issues, there has been much work on implementing symbol detectors and channel estimators using low-resolution ADCs for massive MIMO systems. Although it is intuitively true that using low-resolution ADCs makes it possible to save a large amount of energy consumption in massive MIMO systems, the relationship between energy consumption using low-resolution ADCs and detection performance has not been properly analyzed yet. In this paper, the tradeoff between different detectors and total baseband energy consumption including flexible ADCs is thoroughly analyzed taking the optimal fixed-point operations performed during the detection processes into account. In order to minimize the energy consumption for the given channel condition, the proposed scheme selects the best mode among various processing options while supporting the target frame error rate. The numerous case studies reveal that the proposed work remarkably saves the energy consumption of the massive MIMO processing compared with the existing schemes.11Ysciescopu

    Fast matrix inversion updates for massive MIMO detection and precoding

    Get PDF
    In this letter, methods and corresponding complexities for fast matrix inversion updates in the context of massive multiple-input multiple-output (MIMO) are studied. In particular, we propose an on-the-fly method to recompute the zero forcing (ZF) filter when a user is added or removed from the system. Additionally, we evaluate the recalculation of the inverse matrix after a new channel estimation is obtained for a given user. Results are evaluated numerically in terms of bit error rate (BER) using the Neumann series approximation as the initial inverse matrix. It is concluded that, with fewer operations, the performance after an update remains close to the initial one.info:eu-repo/semantics/acceptedVersio

    Decentralized Massive MIMO Processing Exploring Daisy-chain Architecture and Recursive Algorithms

    Full text link
    Algorithms for Massive MIMO uplink detection and downlink precoding typically rely on a centralized approach, by which baseband data from all antenna modules are routed to a central node in order to be processed. In the case of Massive MIMO, where hundreds or thousands of antennas are expected in the base-station, said routing becomes a bottleneck since interconnection throughput is limited. This paper presents a fully decentralized architecture and an algorithm for Massive MIMO uplink detection and downlink precoding based on the Stochastic Gradient Descent (SGD) method, which does not require a central node for these tasks. Through a recursive approach and very low complexity operations, the proposed algorithm provides a good trade-off between performance, interconnection throughput and latency. Further, our proposed solution achieves significantly lower interconnection data-rate than other architectures, enabling future scalability.Comment: Manuscript accepted for publication in IEEE Transactions on Signal Processin

    A tutorial on the characterisation and modelling of low layer functional splits for flexible radio access networks in 5G and beyond

    Get PDF
    The centralization of baseband (BB) functions in a radio access network (RAN) towards data processing centres is receiving increasing interest as it enables the exploitation of resource pooling and statistical multiplexing gains among multiple cells, facilitates the introduction of collaborative techniques for different functions (e.g., interference coordination), and more efficiently handles the complex requirements of advanced features of the fifth generation (5G) new radio (NR) physical layer, such as the use of massive multiple input multiple output (MIMO). However, deciding the functional split (i.e., which BB functions are kept close to the radio units and which BB functions are centralized) embraces a trade-off between the centralization benefits and the fronthaul costs for carrying data between distributed antennas and data processing centres. Substantial research efforts have been made in standardization fora, research projects and studies to resolve this trade-off, which becomes more complicated when the choice of functional splits is dynamically achieved depending on the current conditions in the RAN. This paper presents a comprehensive tutorial on the characterisation, modelling and assessment of functional splits in a flexible RAN to establish a solid basis for the future development of algorithmic solutions of dynamic functional split optimisation in 5G and beyond systems. First, the paper explores the functional split approaches considered by different industrial fora, analysing their equivalences and differences in terminology. Second, the paper presents a harmonized analysis of the different BB functions at the physical layer and associated algorithmic solutions presented in the literature, assessing both the computational complexity and the associated performance. Based on this analysis, the paper presents a model for assessing the computational requirements and fronthaul bandwidth requirements of different functional splits. Last, the model is used to derive illustrative results that identify the major trade-offs that arise when selecting a functional split and the key elements that impact the requirements.This work has been partially funded by Huawei Technologies. Work by X. Gelabert and B. Klaiqi is partially funded by the European Union's Horizon Europe research and innovation programme (HORIZON-MSCA-2021-DN-0) under the Marie Skłodowska-Curie grant agreement No 101073265. Work by J. Perez-Romero and O. Sallent is also partially funded by the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union’s Horizon Europe research and innovation programme under Grant Agreements No. 101096034 (VERGE project) and No. 101097083 (BeGREEN project) and by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 under ARTIST project (ref. PID2020-115104RB-I00). This last project has also funded the work by D. Campoy.Peer ReviewedPostprint (author's final draft

    Multi-User Holographic MIMO Surfaces: Channel Modeling and Spectral Efficiency Analysis

    Full text link
    The multi-user Holographic Multiple-Input and Multiple-Output Surface (MU-HMIMOS) paradigm, which is capable of realizing large continuous apertures with minimal power consumption, has been recently considered as an energyefficient solution for future wireless networks, offering increased flexibility in impacting electromagnetic (EM) wave propagation according to the desired communication, localization, and sensing objectives. The tractable channel modeling in MU-HMIMOS wireless systems is one of the most critical research challenges, mainly due to the coupling effect induced by the excessively large number of closely spaced patch antennas. In this paper, we focus on this challenge for the downlink of multi-user MIMO communications and extend an EM-compliant channel model to multiuser case, which is expressed in the wavenumber domain using the Fourier plane wave approximation. Based on the presented channel model, we investigate the spectral efficiency of maximumratio transmission and Zero-Forcing (ZF) precoding schemes. We also introduce a novel hardware efficient ZF precoder, leveraging Neumann series (NS) expansion to replace the required matrix inversion operation, which is very hard to be computed in the conventional way due to the extremely large number of patch antennas in the envisioned MU-HMIMOS communication systems. In comparison with the conventional independent and identical Rayleigh fading channels that ignore antenna coupling effects, the proposed EM-compliant channel model captures the mutual couplings induced by the very small antenna spacing. Our extensive performance evaluation results demonstrate that our theoretical performance expressions approximate sufficiently well ..
    corecore