950 research outputs found

    Automatic voice recognition using traditional and artificial neural network approaches

    Get PDF
    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time

    Digital signal processing algorithms for automatic voice recognition

    Get PDF
    The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms

    Speech coding at 4800 bps for mobile satellite communications

    Get PDF
    A speech compression project has recently been completed to develop a speech coding algorithm suitable for operation in a mobile satellite environment aimed at providing telephone quality natural speech at 4.8 kbps. The work has resulted in two alternative techniques which achieve reasonably good communications quality at 4.8 kbps while tolerating vehicle noise and rather severe channel impairments. The algorithms are embodied in a compact self-contained prototype consisting of two AT and T 32-bit floating-point DSP32 digital signal processors (DSP). A Motorola 68HC11 microcomputer chip serves as the board controller and interface handler. On a wirewrapped card, the prototype's circuit footprint amounts to only 200 sq cm, and consumes about 9 watts of power

    Development of the Feature Extractor for Speech Recognition

    Get PDF
    Projecte final de carrera realitzat en col.laboració amb University of MariborWith this diploma work we have attempted to give continuity to the previous work done by other researchers called, Voice Operating Intelligent Wheelchair – VOIC [1]. A development of a wheelchair controlled by voice is presented in this work and is designed for physically disabled people, who cannot control their movements. This work describes basic components of speech recognition and wheelchair control system. Going to the grain, a speech recognizer system is comprised of two distinct blocks, a Feature Extractor and a Recognizer. The present work is targeted at the realization of an adequate Feature Extractor block which uses a standard LPC Cepstrum coder, which translates the incoming speech into a trajectory in the LPC Cepstrum feature space, followed by a Self Organizing Map, which classifies the outcome of the coder in order to produce optimal trajectory representations of words in reduced dimension feature spaces. Experimental results indicate that trajectories on such reduced dimension spaces can provide reliable representations of spoken words. The Recognizer block is left for future researchers. The main contributions of this work have been the research and approach of a new technology for development issues and the realization of applications like a voice recorder and player and a complete Feature Extractor system

    Analysis and Implementation of Speech Recognition System using ARM7 Processor

    Get PDF
    This paper introduces implementation and analysis of speech recognition system. Speech Recognition is the process of automatically recognizing a certain word spoken by a particular speaker based on individual information included in speech waves. This paper presents one of the techniques to extract the feature set from a speech signal, which can be used in speech recognition systems and an analysis study has been performed. A wide range of possibilities exist for parametrically representing the speech signal for the speaker recognition task, such as Linear Prediction Coding (LPC), Mel-Frequency Cepstrum Coefficients (MFCC),and others. Studies and experiments show that MFCC provides better results than LPC. Here vector quantization is used to increase speech recognition accuracy. Experiments shows that as the no. of MFCC coefficients increases get better accuracy, code book size also affects accuracy. The MFCC and VQ algorithm, for speech recognition have been implemented in MATLAB 7.7(R2008b) version on Windows7 platform. The control circuitry has been implemented in Keil µVision3; the supporting hardware setup is being implemented. Keywords: Speech Recognition; MFCC; Vector Quantization; LP
    • …
    corecore