1,180 research outputs found

    Framework of hierarchy for neural theory

    Get PDF

    Land Use and Land Cover Classification Using Deep Learning Techniques

    Get PDF
    abstract: Large datasets of sub-meter aerial imagery represented as orthophoto mosaics are widely available today, and these data sets may hold a great deal of untapped information. This imagery has a potential to locate several types of features; for example, forests, parking lots, airports, residential areas, or freeways in the imagery. However, the appearances of these things vary based on many things including the time that the image is captured, the sensor settings, processing done to rectify the image, and the geographical and cultural context of the region captured by the image. This thesis explores the use of deep convolutional neural networks to classify land use from very high spatial resolution (VHR), orthorectified, visible band multispectral imagery. Recent technological and commercial applications have driven the collection a massive amount of VHR images in the visible red, green, blue (RGB) spectral bands, this work explores the potential for deep learning algorithms to exploit this imagery for automatic land use/ land cover (LULC) classification. The benefits of automatic visible band VHR LULC classifications may include applications such as automatic change detection or mapping. Recent work has shown the potential of Deep Learning approaches for land use classification; however, this thesis improves on the state-of-the-art by applying additional dataset augmenting approaches that are well suited for geospatial data. Furthermore, the generalizability of the classifiers is tested by extensively evaluating the classifiers on unseen datasets and we present the accuracy levels of the classifier in order to show that the results actually generalize beyond the small benchmarks used in training. Deep networks have many parameters, and therefore they are often built with very large sets of labeled data. Suitably large datasets for LULC are not easy to come by, but techniques such as refinement learning allow networks trained for one task to be retrained to perform another recognition task. Contributions of this thesis include demonstrating that deep networks trained for image recognition in one task (ImageNet) can be efficiently transferred to remote sensing applications and perform as well or better than manually crafted classifiers without requiring massive training data sets. This is demonstrated on the UC Merced dataset, where 96% mean accuracy is achieved using a CNN (Convolutional Neural Network) and 5-fold cross validation. These results are further tested on unrelated VHR images at the same resolution as the training set.Dissertation/ThesisMasters Thesis Computer Science 201

    Modeling and Design of Digital Electronic Systems

    Get PDF
    The paper is concerned with the modern methodologies for holistic modeling of electronic systems enabling system-on-chip design. The method deals with the functional modeling of complete electronic systems using the behavioral features of Hardware Description Languages or high level languages then targeting programmable devices - mainly Field Programmable Gate Arrays (FPGAs) - for the rapid prototyping of digital electronic controllers. This approach offers major advantages such as: a unique modeling and evaluation environment for complete power systems, the same environment is used for the rapid prototyping of the digital controller, fast design development, short time to market, a CAD platform independent model, reusability of the model/design, generation of valuable IP, high level hardware/software partitioning of the design is enabled, Concurrent Engineering basic rules (unique EDA environment and common design database) are fulfilled. The recent evolution of such design methodologies is marked through references to case studies of electronic system modeling,simulation, controller design and implementation. Pointers for future trends / evolution of electronic design strategies and tools are given

    Running parallel applications on a heterogeneous environment with accessible development practices and automatic scalability

    Get PDF
    Grid computing makes it possible to gather large quantities of resources to work on a problem. In order to exploit this potential, a framework that presents the resources to the user programmer in a form that maintains productivity is necessary. The framework must not only provide accessible development, but it must make efficient use of the resources. The Seeds framework is proposed. It uses the current Grid and distributed computing middleware to provide a parallel programming environment to a wider community of programmers. The framework was used to investigate the feasibility of scaling skeleton/pattern parallel programming into Grid computing. The research accomplished two goals: it made parallel programming on the Grid more accessible to domain­specific programmers, and it made parallel programs scale on a heterogeneous resource environ­ ment. Programming is made easier to the programmer by using skeleton and pat­ tern­based programming approaches that effectively isolate the program from the envi­ ronment. To extend the pattern approach, the pattern adder operator is proposed, imple­ mented and tested. The results show the pattern operator can reduce the number of lines of code when compared with an MPJ­Express implementation for a stencil algorithm while having an overhead of at most ten microseconds per iteration. The research in scal­ ability involved adapting existing load­balancing techniques to skeletons and patterns re­ quiring little additional configuration on the part of the programmer. The hierarchical de­ pendency concept is proposed as well, which uses a streamed data flow programming model. The concept introduces data flow computation hibernation and dependencies that can split to accommodate additional processors. The results from implementing skeleton/patterns on hierarchical dependencies show an 18.23% increase in code is neces­ sary to enable automatic scalability. The concept can increase speedup depending on the algorithm and grain size

    Developing a Qualia-Based Multi-Agent Architecture for Use in Malware Detection

    Get PDF
    Detecting network intruders and malicious software is a significant problem for network administrators and security experts. New threats are emerging at an increasing rate, and current signature and statistics-based techniques are not keeping pace. Intelligent systems that can adapt to new threats are needed to mitigate these new strains of malware as they are released. This research detects malware based on its qualia, or essence rather than its low-level implementation details. By looking for the underlying concepts that make a piece of software malicious, this research avoids the pitfalls of static solutions that focus on predefined bit sequence signatures or anomaly thresholds. This research develops a novel, hierarchical modeling method to represent a computing system and demonstrates the representation’s effectiveness by modeling the Blaster worm. Using Latent Dirichlet Allocation and Support Vector Machines abstract concepts are automatically generated that can be used in the hierarchical model for malware detection. Finally, the research outlines a novel system that uses multiple levels of individual software agents that sharing contextual relationships and information across different levels of abstraction to make decisions. This qualia-based system provides a framework for developing intelligent classification and decision-making systems for a number of application areas
    corecore