3,079 research outputs found

    Distributed Detection With Multiple Sensors: Part I—Fundamentals

    Get PDF
    In this paper, basic results on distributed detection are reviewed. In particular, we consider the parallel and the serial architectures in some detail and discuss the decision rules obtained from their optimization based on the Neyman–Pearson (NP) criterion and the Bayes formulation. For conditionally independent sensor observations, the optimality of the likelihood ratio test (LRT) at the sensors is established. General comments on several important issues are made including the computational complexity of obtaining the optimal solutions, the design of detection networks with more general topologies, and applications to different areas

    Coordination, adaptation, and complexity in decision fusion

    Get PDF
    A parallel decentralized binary decision fusion architecture employs a bank of local detectors (LDs) that access a commonly-observed phenomenon. The system makes a binary decision about the phenomenon, accepting one of two hypotheses (H0 (“absent”) or H1 (“present”)). The k 1 LD uses a local decision rule to compress its local observations yk into a binary local decision uk; uk = 0 if the k 1 LD accepts H0 and uk = 1 if it accepts H1. The k 1 LD sends its decision uk over a noiseless dedicated channel to a Data Fusion Center (DFC). The DFC combines the local decisions it receives from n LDs (u1, u2, ... , un) into a single binary global decision u0 (u0 = 0 for accepting H0 or u0 = 1 for accepting H1). If each LD uses a single deterministic local decision rule (calculating uk from the local observation yk) and the DFC uses a single deterministic global decision rule (calculating u0 from the n local decisions), the team receiver operating characteristic (ROC) curve is in general non-concave. The system’s performance under a Neyman-Pearson criterion may therefore be suboptimal in the sense that a mixed strategy may yield a higher probability of detection when the probability of false alarm is constrained not to exceed a certain value, a \u3e 0. Specifically, a “dependent randomization” detection scheme can be applied in certain circumstances to improve the system’s performance by making the ROC curve concave. This scheme requires a coordinated and synchronized action between the DFC and the LDs. This study specifies when dependent randomization is needed, and discusses the proper response of the detection system if synchronization between the LDs and the DFC is temporarily lost. In addition, the complexity of selected parallel decentralized binary decision fusion algorithms is studied and the state of the art in adaptive decision fusion is assessed

    Gravitational Wave Data Analysis: Computing Challenges in the 3G Era

    Get PDF
    Cyber infrastructure will be a critical consideration in the development of next generation gravitational-wave detectors. The demand for data analysis computing in the 3G era will be driven by the high number of detections as well as the expanded search parameter space for compact astrophysical objects and the subsequent parameter estimation follow-up required to extract the nature of the sources. Additionally, there will be an increased need to develop appropriate and scalable computing cyberinfrastructure, including data access and transfer protocols, and storage and management of software tools, that have sustainable development, support, and management processes. This report identifies the major challenges and opportunities facing 3G gravitational-wave observatories and presents recommendations for addressing them. This report is the fourth in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book, iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era (this report), v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    USING PROBABILISTIC GRAPHICAL MODELS TO DRAW INFERENCES IN SENSOR NETWORKS WITH TRACKING APPLICATIONS

    Get PDF
    Sensor networks have been an active research area in the past decade due to the variety of their applications. Many research studies have been conducted to solve the problems underlying the middleware services of sensor networks, such as self-deployment, self-localization, and synchronization. With the provided middleware services, sensor networks have grown into a mature technology to be used as a detection and surveillance paradigm for many real-world applications. The individual sensors are small in size. Thus, they can be deployed in areas with limited space to make unobstructed measurements in locations where the traditional centralized systems would have trouble to reach. However, there are a few physical limitations to sensor networks, which can prevent sensors from performing at their maximum potential. Individual sensors have limited power supply, the wireless band can get very cluttered when multiple sensors try to transmit at the same time. Furthermore, the individual sensors have limited communication range, so the network may not have a 1-hop communication topology and routing can be a problem in many cases. Carefully designed algorithms can alleviate the physical limitations of sensor networks, and allow them to be utilized to their full potential. Graphical models are an intuitive choice for designing sensor network algorithms. This thesis focuses on a classic application in sensor networks, detecting and tracking of targets. It develops feasible inference techniques for sensor networks using statistical graphical model inference, binary sensor detection, events isolation and dynamic clustering. The main strategy is to use only binary data for rough global inferences, and then dynamically form small scale clusters around the target for detailed computations. This framework is then extended to network topology manipulation, so that the framework developed can be applied to tracking in different network topology settings. Finally the system was tested in both simulation and real-world environments. The simulations were performed on various network topologies, from regularly distributed networks to randomly distributed networks. The results show that the algorithm performs well in randomly distributed networks, and hence requires minimum deployment effort. The experiments were carried out in both corridor and open space settings. A in-home falling detection system was simulated with real-world settings, it was setup with 30 bumblebee radars and 30 ultrasonic sensors driven by TI EZ430-RF2500 boards scanning a typical 800 sqft apartment. Bumblebee radars are calibrated to detect the falling of human body, and the two-tier tracking algorithm is used on the ultrasonic sensors to track the location of the elderly people

    BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches

    Full text link
    A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal models are available, such as for binary Neutron star systems, it is possible to make robust detection statements even when the noise is poorly understood. In contrast, searches for "un-modeled" transient signals are strongly impacted by the methods used to characterize the noise. Here we take a Bayesian approach and introduce a multi-component, variable dimension, parameterized noise model that explicitly accounts for non-stationarity and non-Gaussianity in data from interferometric gravitational wave detectors. Instrumental transients (glitches) and burst sources of gravitational waves are modeled using a Morlet-Gabor continuous wavelet frame. The number and placement of the wavelets is determined by a trans-dimensional Reversible Jump Markov Chain Monte Carlo algorithm. The Gaussian component of the noise and sharp line features in the noise spectrum are modeled using the BayesLine algorithm, which operates in concert with the wavelet model.Comment: 36 pages, 15 figures, Version accepted by Class. Quant. Gra

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Neural Classifier Systems for Histopathologic Diagnosis

    Full text link
    Neural network and statistical classification methods were applied to derive an objective grading for moderately and poorly differentiated lesions, based on characteristics of the nuclear placement patterns. Using a multilayer network after abbreviated training as a feature extractor followed by a quadratic Bayesian classifier allowed grade assignment agreeing with visual diagnostic consensus in 96% of fields from the training set of 500 fields, and a 77% of 130 fields of a test set
    • …
    corecore