253 research outputs found

    Equalization-Based Digital Background Calibration Technique for Pipelined ADCs

    Get PDF
    In this paper, we present a digital background calibration technique for pipelined analog-to-digital converters (ADCs). In this scheme, the capacitor mismatch, residue gain error, and amplifier nonlinearity are measured and then corrected in digital domain. It is based on the error estimation with nonprecision calibration signals in foreground mode, and an adaptive linear prediction structure is used to convert the foreground scheme to the background one. The proposed foreground technique utilizes the LMS algorithm to estimate the error coefficients without needing high-accuracy calibration signals. Several simulation results in the context of a 12-b 100-MS/s pipelined ADC are provided to verify the usefulness of the proposed calibration technique. Circuit-level simulation results show that the ADC achieves 28-dB signal-to-noise and distortion ratio and 41-dB spurious-free dynamic range improvement, respectively, compared with the noncalibrated ADC

    A jittered-sampling correction technique for ADCs

    Get PDF
    In Analogue to Digital Converters (ADCs) jittered sampling raises the noise floor; this leads to a decrease in its Signal to Noise ratio (SNR) and its effective number of bits (ENOB). This research studies a technique that compensate for the effects of sampling with a jittered clock. A thorough understanding of sampling in various data converters is complied

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF
    corecore