693 research outputs found

    Hardware architecture specification and constraint-based WCET computation

    Get PDF
    International audienceThe analysis of the worst-case execution times is necessary in the design of critical real-time systems. To get sound and precise times, the WCET analysis for these systems must be performed on binary code and based on static analysis. OTAWA, a tool providing WCET computation, uses the Sim-nML language to describe the instruction set and XML files to describe the microarchitecture. The latter information is usually inadequate to describe real architectures and, therefore, requires specific modifications, currently performed by hand, to allow correct time calculation. In this paper, we propose to extend Sim-nML in order to support the description of modern microarchitecture features along the instruction set description and to seamlessly derive the time calculation. This time computation is specified as a constraint solving problem that is automatically synthesized from the extended Sim-nML. Thanks to its declarative aspect, this approach makes easier and modular the description of complex features of microprocessors while maintaining a sound process to compute times

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    A constraint-based WCET computation framework

    Get PDF
    National audienceOTAWA is a tool dedicated to the WCET computation of critical real-time systems. The tool was enhanced in order to take into account modern micro-architecture features, through an ADL-based approach. Architecture constraints are expresses such that they can be solved by well known efficient constraint solvers. In this paper, we present how we could describe some complex architecture features using the Sim-nML language. We are also concerned by the validation and the animation point of views

    Formal Architecture Specification for Time Analysis

    Get PDF
    International audienceWCET calculus is nowadays a must for safety critical systems. As a matter of fact, basic real-time properties rely on accurate timings. Although over the last years, substantial progress has been made in order to get a more precise WCET, we believe that the design of the underlying frameworks deserve more attention. In this paper, we are concerned mainly with two aspects which deal with the modularity of these frameworks. First, we enhance the existing language Sim-nML for describing processors at the instruction level in order to capture modern architecture aspects. Second, we propose a light DSL in order to describe, in a formal prose, architectural aspects related to both the structural aspects as well as to the behavioral aspects

    Control/Architecture co-design for cyber-physical systems

    Get PDF

    Software development of reconfigurable real-time systems : from specification to implementation

    Get PDF
    This thesis deals with reconfigurable real-time systems solving real-time tasks scheduling problems in a mono-core and multi-core architectures. The main focus in this thesis is on providing guidelines, methods, and tools for the synthesis of feasible reconfigurable real-time systems in a mono-processor and multi-processor architectures. The development of these systems faces various challenges particularly in terms of stability, energy consumption, response and blocking time. To address this problem, we propose in this work a new strategy of i) placement and scheduling of tasks to execute real-time applications on mono-core and multi-core architectures, ii) optimization step based on Mixed integer linear programming (MILP), and iii) guidance tool that assists designers to implement a feasible multi-core reconfigurable real-time from specification level to implementation level. We apply and simulate the contribution to a case study, and compare the proposed results with related works in order to show the originality of this methodology.Echtzeitsysteme laufen unter harten Bedingungen an ihre Ausführungszeit. Die Einhaltung der Echtzeit-Bedingungen bestimmt die Zuverlässigkeit und Genauigkeit dieser Systeme. Neben den Echtzeit-Bedingungen müssen rekonfigurierbare Echtzeitsysteme zusätzliche Rekonfigurations-Bedingungen erfüllen. Diese Arbeit beschäftigt sich mit rekonfigurierbaren Echtzeitsystemen in Mono- und Multicore-Architekturen. An die Entwicklung dieser Systeme sind verschiedene Anforderungen gestellt. Insbesondere muss die Rekonfigurierbarkeit beachtet werden. Dabei sind aber Echtzeit-Bedingungen und Ressourcenbeschränkungen weiterhin zu beachten. Darüber hinaus werden die Kosten für die Entwicklung dieser Systeme insbesondere durch falsche Designentscheidungen in den frühen Phasen der Entwicklung stark beeinträchtigt. Das Hauptziel in dieser Arbeit liegt deshalb auf der Bereitstellung von Handlungsempfehlungen, Methoden und Werkzeugen für die zielgerichtete Entwicklung von realisierbaren rekonfigurierbaren Echtzeitsystemen in Mono- und Multicore-Architekturen. Um diese Herausforderungen zu adressieren wird eine neue Strategie vorgeschlagen, die 1) die Funktionsallokation, 2) die Platzierung und das Scheduling von Tasks, 3) einen Optimierungsschritt auf der Basis von Mixed Integer Linear Programming (MILP) und 4) eine entscheidungsunterstützende Lösung umfasst, die den Designern hilft, eine realisierbare rekonfigurierbare Echtzeitlösung von der Spezifikationsebene bis zur Implementierungsebene zu entwickeln. Die vorgeschlagene Methodik wird auf eine Fallstudie angewendet und mit verwandten Arbeiten vergliche

    From Dataflow Specification to Multiprocessor Partitioned Time-triggered Real-time Implementation *

    Get PDF
    International audienceOur objective is to facilitate the development of complex time-triggered systems by automating the allocation and scheduling steps. We show that full automation is possible while taking into account the elements of complexity needed by a complex embedded control system. More precisely, we consider deterministic functional specifications provided (as often in an industrial setting) by means of synchronous data-flow models with multiple modes and multiple relative periods. We first extend this functional model with an original real-time characterization that takes advantage of our time-triggered framework to provide a simpler representation of complex end-to-end flow requirements. We also extend our specifications with additional non-functional properties specifying partitioning, allocation , and preemptability constraints. Then, weprovide novel algorithms for the off-line scheduling of these extended specifications onto partitioned time-triggered architectures Ă  la ARINC 653. The main originality of our work is that it takes into account at the same time multiple complexity elements: various types of non-functional properties (real-time, partitioning, allocation, preemptability) and functional specifications with conditional execution and multiple modes. Allocation of time slots/windows to partitions can be fullyor partially provided, or synthesized by our tool. Our algorithms allow the automatic allocation and scheduling onto multi-processor (distributed) sys-tems with a global time base, taking into account communication costs. We demonstrate our technique on a model of space flight software systemwith strong real-time determinism requirements

    Handling timing constraints violations in soft real-time applications as exceptions

    Get PDF
    In this paper, an exception-based programming paradigm is envisioned to deal with timing constraints violations occurring in soft real-time and multimedia applications written in the C language. In order to prove viability of the approach, a mechanism allowing to use such paradigm has been designed and implemented as an open-source library of C macros making use of the standard POSIX API (a few Linux-specific optimizations are also briefly discussed). The proposed approach has been validated by modifying mplayer, one of the most widely used multimedia player for Linux, so as to use the introduced library. An extensive experimental evaluation has been made, both when running the player alone and when mixing it with a workload of other synthetic real-time applications. In the latter case, different scheduling policies have been used, including both standard priority-based ones as available on the mainline Linux, and an experimental deadline-based one available as a separate patch. The shown results demonstrate how the exception-based paradigm is effective in improving the audio/video delay exhibited by the player achieving a superior performance and a dramatically better quality of experience as compared to the original heuristic frame-dropping mechanism of the player
    • …
    corecore