230 research outputs found

    Low-power pedestrian detection system on FPGA

    Get PDF
    Pedestrian detection is one of the key problems in the emerging self-driving car industry. In addition, the Histogram of Gradients (HOG) algorithm proved to provide good accuracy for pedestrian detection. Many research works focused on accelerating HOG algorithm on FPGA(Field-Programmable Gate Array) due to its low-power and high-throughput characteristics. In this paper, we present an energy-efficient HOG-based implementation for pedestrian detection system on a low-cost FPGA system-on-chip platform. The hardware accelerator implements the HOG computation and the Support Vector Machine classifier, the rest of the algorithm is mapped to software in the embedded processor. The hardware runs at 50 Mhz (lower frequency than previous works), thus achieving the best pixels processed per clock and the lower power design

    Computer Vision System-On-Chip Designs for Intelligent Vehicles

    Get PDF
    Intelligent vehicle technologies are growing rapidly that can enhance road safety, improve transport efficiency, and aid driver operations through sensors and intelligence. Advanced driver assistance system (ADAS) is a common platform of intelligent vehicle technologies. Many sensors like LiDAR, radar, cameras have been deployed on intelligent vehicles. Among these sensors, optical cameras are most widely used due to their low costs and easy installation. However, most computer vision algorithms are complicated and computationally slow, making them difficult to be deployed on power constraint systems. This dissertation investigates several mainstream ADAS applications, and proposes corresponding efficient digital circuits implementations for these applications. This dissertation presents three ways of software / hardware algorithm division for three ADAS applications: lane detection, traffic sign classification, and traffic light detection. Using FPGA to offload critical parts of the algorithm, the entire computer vision system is able to run in real time while maintaining a low power consumption and a high detection rate. Catching up with the advent of deep learning in the field of computer vision, we also present two deep learning based hardware implementations on application specific integrated circuits (ASIC) to achieve even lower power consumption and higher accuracy. The real time lane detection system is implemented on Xilinx Zynq platform, which has a dual core ARM processor and FPGA fabric. The Xilinx Zynq platform integrates the software programmability of an ARM processor with the hardware programmability of an FPGA. For the lane detection task, the FPGA handles the majority of the task: region-of-interest extraction, edge detection, image binarization, and hough transform. After then, the ARM processor takes in hough transform results and highlights lanes using the hough peaks algorithm. The entire system is able to process 1080P video stream at a constant speed of 69.4 frames per second, realizing real time capability. An efficient system-on-chip (SOC) design which classifies up to 48 traffic signs in real time is presented in this dissertation. The traditional histogram of oriented gradients (HoG) and support vector machine (SVM) are proven to be very effective on traffic sign classification with an average accuracy rate of 93.77%. For traffic sign classification, the biggest challenge comes from the low execution efficiency of the HoG on embedded processors. By dividing the HoG algorithm into three fully pipelined stages, as well as leveraging extra on-chip memory to store intermediate results, we successfully achieved a throughput of 115.7 frames per second at 1080P resolution. The proposed generic HoG hardware implementation could also be used as an individual IP core by other computer vision systems. A real time traffic signal detection system is implemented to present an efficient hardware implementation of the traditional grass-fire blob detection. The traditional grass-fire blob detection method iterates the input image multiple times to calculate connected blobs. In digital circuits, five extra on-chip block memories are utilized to save intermediate results. By using additional memories, all connected blob information could be obtained through one-pass image traverse. The proposed hardware friendly blob detection can run at 72.4 frames per second with 1080P video input. Applying HoG + SVM as feature extractor and classifier, 92.11% recall rate and 99.29% precision rate are obtained on red lights, and 94.44% recall rate and 98.27% precision rate on green lights. Nowadays, convolutional neural network (CNN) is revolutionizing computer vision due to learnable layer by layer feature extraction. However, when coming into inference, CNNs are usually slow to train and slow to execute. In this dissertation, we studied the implementation of principal component analysis based network (PCANet), which strikes a balance between algorithm robustness and computational complexity. Compared to a regular CNN, the PCANet only needs one iteration training, and typically at most has a few tens convolutions on a single layer. Compared to hand-crafted features extraction methods, the PCANet algorithm well reflects the variance in the training dataset and can better adapt to difficult conditions. The PCANet algorithm achieves accuracy rates of 96.8% and 93.1% on road marking detection and traffic light detection, respectively. Implementing in Synopsys 32nm process technology, the proposed chip can classify 724,743 32-by-32 image candidates in one second, with only 0.5 watt power consumption. In this dissertation, binary neural network (BNN) is adopted as a potential detector for intelligent vehicles. The BNN constrains all activations and weights to be +1 or -1. Compared to a CNN with the same network configuration, the BNN achieves 50 times better resource usage with only 1% - 2% accuracy loss. Taking car detection and pedestrian detection as examples, the BNN achieves an average accuracy rate of over 95%. Furthermore, a BNN accelerator implemented in Synopsys 32nm process technology is presented in our work. The elastic architecture of the BNN accelerator makes it able to process any number of convolutional layers with high throughput. The BNN accelerator only consumes 0.6 watt and doesn\u27t rely on external memory for storage

    Computer Vision System-On-Chip Designs for Intelligent Vehicles

    Get PDF
    Intelligent vehicle technologies are growing rapidly that can enhance road safety, improve transport efficiency, and aid driver operations through sensors and intelligence. Advanced driver assistance system (ADAS) is a common platform of intelligent vehicle technologies. Many sensors like LiDAR, radar, cameras have been deployed on intelligent vehicles. Among these sensors, optical cameras are most widely used due to their low costs and easy installation. However, most computer vision algorithms are complicated and computationally slow, making them difficult to be deployed on power constraint systems. This dissertation investigates several mainstream ADAS applications, and proposes corresponding efficient digital circuits implementations for these applications. This dissertation presents three ways of software / hardware algorithm division for three ADAS applications: lane detection, traffic sign classification, and traffic light detection. Using FPGA to offload critical parts of the algorithm, the entire computer vision system is able to run in real time while maintaining a low power consumption and a high detection rate. Catching up with the advent of deep learning in the field of computer vision, we also present two deep learning based hardware implementations on application specific integrated circuits (ASIC) to achieve even lower power consumption and higher accuracy. The real time lane detection system is implemented on Xilinx Zynq platform, which has a dual core ARM processor and FPGA fabric. The Xilinx Zynq platform integrates the software programmability of an ARM processor with the hardware programmability of an FPGA. For the lane detection task, the FPGA handles the majority of the task: region-of-interest extraction, edge detection, image binarization, and hough transform. After then, the ARM processor takes in hough transform results and highlights lanes using the hough peaks algorithm. The entire system is able to process 1080P video stream at a constant speed of 69.4 frames per second, realizing real time capability. An efficient system-on-chip (SOC) design which classifies up to 48 traffic signs in real time is presented in this dissertation. The traditional histogram of oriented gradients (HoG) and support vector machine (SVM) are proven to be very effective on traffic sign classification with an average accuracy rate of 93.77%. For traffic sign classification, the biggest challenge comes from the low execution efficiency of the HoG on embedded processors. By dividing the HoG algorithm into three fully pipelined stages, as well as leveraging extra on-chip memory to store intermediate results, we successfully achieved a throughput of 115.7 frames per second at 1080P resolution. The proposed generic HoG hardware implementation could also be used as an individual IP core by other computer vision systems. A real time traffic signal detection system is implemented to present an efficient hardware implementation of the traditional grass-fire blob detection. The traditional grass-fire blob detection method iterates the input image multiple times to calculate connected blobs. In digital circuits, five extra on-chip block memories are utilized to save intermediate results. By using additional memories, all connected blob information could be obtained through one-pass image traverse. The proposed hardware friendly blob detection can run at 72.4 frames per second with 1080P video input. Applying HoG + SVM as feature extractor and classifier, 92.11% recall rate and 99.29% precision rate are obtained on red lights, and 94.44% recall rate and 98.27% precision rate on green lights. Nowadays, convolutional neural network (CNN) is revolutionizing computer vision due to learnable layer by layer feature extraction. However, when coming into inference, CNNs are usually slow to train and slow to execute. In this dissertation, we studied the implementation of principal component analysis based network (PCANet), which strikes a balance between algorithm robustness and computational complexity. Compared to a regular CNN, the PCANet only needs one iteration training, and typically at most has a few tens convolutions on a single layer. Compared to hand-crafted features extraction methods, the PCANet algorithm well reflects the variance in the training dataset and can better adapt to difficult conditions. The PCANet algorithm achieves accuracy rates of 96.8% and 93.1% on road marking detection and traffic light detection, respectively. Implementing in Synopsys 32nm process technology, the proposed chip can classify 724,743 32-by-32 image candidates in one second, with only 0.5 watt power consumption. In this dissertation, binary neural network (BNN) is adopted as a potential detector for intelligent vehicles. The BNN constrains all activations and weights to be +1 or -1. Compared to a CNN with the same network configuration, the BNN achieves 50 times better resource usage with only 1% - 2% accuracy loss. Taking car detection and pedestrian detection as examples, the BNN achieves an average accuracy rate of over 95%. Furthermore, a BNN accelerator implemented in Synopsys 32nm process technology is presented in our work. The elastic architecture of the BNN accelerator makes it able to process any number of convolutional layers with high throughput. The BNN accelerator only consumes 0.6 watt and doesn\u27t rely on external memory for storage

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    Kodizajn arhitekture i algoritama za lokalizacijumobilnih robota i detekciju prepreka baziranih namodelu

    No full text
    This thesis proposes SoPC (System on a Programmable Chip) architectures for efficient embedding of vison-based localization and obstacle detection tasks in a navigational pipeline on autonomous mobile robots. The obtained results are equivalent or better in comparison to state-ofthe- art. For localization, an efficient hardware architecture that supports EKF-SLAM's local map management with seven-dimensional landmarks in real time is developed. For obstacle detection a novel method of object recognition is proposed - detection by identification framework based on single detection window scale. This framework allows adequate algorithmic precision and execution speeds on embedded hardware platforms.Ova teza bavi se dizajnom SoPC (engl. System on a Programmable Chip) arhitektura i algoritama za efikasnu implementaciju zadataka lokalizacije i detekcije prepreka baziranih na viziji u kontekstu autonomne robotske navigacije. Za lokalizaciju, razvijena je efikasna računarska arhitektura za EKF-SLAM algoritam, koja podržava skladištenje i obradu sedmodimenzionalnih orijentira lokalne mape u realnom vremenu. Za detekciju prepreka je predložena nova metoda prepoznavanja objekata u slici putem prozora detekcije fiksne dimenzije, koja omogućava veću brzinu izvršavanja algoritma detekcije na namenskim računarskim platformama

    Entwicklung von Objekterkennungssystemen für SoC-FPGA Plattformen

    Get PDF
    Object detection is a crucial and challenging task in the field of embedded vision and robotics. Over the last 15 years, various object detection algorithms/systems (e.g., face detection, traffic sign detection) are proposed by different researchers and companies. Most of these research are either focused on improving the detection performance or devoted to boosting the detection speed, which reveals two typically employed criteria while evaluating an object detection algorithm/system: detection accuracy and execution speed. Considering these two factors and the application of object detection to the domains such as service robots and Advanced Driving Assistance System (ADAS), FPGA is a promising platform to achieve accurate object detection in real-time. Therefore, FPGA-based robust object detection systems are designed in this work. The main work of this thesis can be divided into two parts: promising algorithm obtaining and hardware design on SoC-FPGA. Firstly, representative object detection algorithms are selected, implemented, and evaluated. Thereafter, a generalized object detection framework is created. With this framework, pedestrian detection, traffic sign detection, and head detection algorithms are realized and tested. The experiments verify that promising detection results can be obtained by employing the generalized object detection framework. For the work of hardware design on FPGA, the platform of the object detection system, which consists of stereo OV7670 cameras, Xilinx Zedboard, and a monitor that can visualize the detection results, is created. After that, IP cores that correspond to each block of the framework are designed. Configurable parameters are provided by each IP core so that the IPs, especially feature calculation IP and feature scaler IP, can be correctly instanced according to the fast feature pyramid theory. Finally, by employing the designed IP cores, pedestrian detection system, traffic sign detection system, and head detection system are designed and evaluated. The on-board testing results show that real-time object (e.g., pedestrian, traffic sign, head) detection with promising accuracy can all be achieved. In addition, with the generalized object detection framework and the designed IP-toolbox, the object detection system that targets any instance of objects can be designed and implemented rapidly.Objekterkennung ist eine essenzielle und herausfordernde Aufgabe in den Forschungsgebieten der Embedded Vision und der Robotik. In den letzten 15 Jahren wurden verschiedene Objekterkennungsalgorithmen und Systeme (z.B. Gesichtserkennung) aus der Forschung sowie der Industrie präsentiert. Der Forschungsschwerpunkt liegt dabei typischerweise entweder bei der Verbesserung der Erkennungsqualität oder bei der Beschleunigung der Erkennungsgeschwindigkeit. Hieraus leiten sich direkt die Kriterien für den Einsatz von Objekterkennungsalgorithmen und Systemen ab: Erkennungsgenauigkeit und die Erkennungslatenz. Unter Berücksichtigung dieser Kriterien und dem konkreten Einsatzgebiet der Objekterkennung für Serviceroboter und ADAS haben sich FPGA Plattformen als vielversprechende Kandidaten für die Implementierung von hoch genauen Objekterkennungsalgorithmen mit strikten Echtzeitanforderungen herausgestellt. Auf Bases dessen wurden im Rahmen dieser Arbeit eine robuste Objekterkennung entwickelt. Der Fokus dieser Arbeit ist geteilt in zwei Aspekte: Identifikation und Analyse geeigneter Objekterkennungsalgorithmen und deren Implementierung in einer FPGA basierten SoC-Plattform. Zu Beginn wurden eine Reihe von repräsentativen Algorithmen ausgewählt, in einer Testumgebung implementiert und evaluiert. Darauf aufbauend wurde ein Entwicklungs-Frameworks für die Erkennung von Passanten, Verkehrszeichen sowie Kopfdetektion entwickelt und analysiert. Für die Entwicklung einer FPGA basierten Plattform wurde ein Objekterkennungssystem erstellt. Eine Sammlung aus IP-Cores, die das Entwicklungs-Framework bilden, wurden für die FPGA Plattform implementiert. Die IP-Cores bieten eine Reihe von Konfigurationsparametern für den flexiblen Einsatz von neuen Komponenten, im Besonderen IP-Cores für die Berechnung und Skalierung von Erkennungseigenschaften, basierend auf der Fast Feature Pyramid Theorie. Abschliessend wurden die entwickelten IP-Cores zur Erkennung von Passanten, Verkehrszeichen sowie die Kopfdetektion integriert und gemeinsam evaluiert. Die gesammelten Ergebnisse aus verschiedenen Testscenarios der entwickelten FPGA-Plattform zeigen, dass die Objekterkennung in Echtzeit mit vielversprechender Genauigkeit erreichbar ist. Darüber hinaus können mit dem generalisierten Objekterkennungsrahmen und der entwickelten IP-Toolbox schnell und flexibel belibige Objekterkennungssysteme entwickelt und implementiert werden

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    Evaluation and Acceleration of High-Throughput Fixed-Point Object Detection on FPGAs

    Full text link

    Efficiently mapping high-performance early vision algorithms onto multicore embedded platforms

    Get PDF
    The combination of low-cost imaging chips and high-performance, multicore, embedded processors heralds a new era in portable vision systems. Early vision algorithms have the potential for highly data-parallel, integer execution. However, an implementation must operate within the constraints of embedded systems including low clock rate, low-power operation and with limited memory. This dissertation explores new approaches to adapt novel pixel-based vision algorithms for tomorrow's multicore embedded processors. It presents : - An adaptive, multimodal background modeling technique called Multimodal Mean that achieves high accuracy and frame rate performance with limited memory and a slow-clock, energy-efficient, integer processing core. - A new workload partitioning technique to optimize the execution of early vision algorithms on multi-core systems. - A novel data transfer technique called cat-tail dma that provides globally-ordered, non-blocking data transfers on a multicore system. By using efficient data representations, Multimodal Mean provides comparable accuracy to the widely used Mixture of Gaussians (MoG) multimodal method. However, it achieves a 6.2x improvement in performance while using 18% less storage than MoG while executing on a representative embedded platform. When this algorithm is adapted to a multicore execution environment, the new workload partitioning technique demonstrates an improvement in execution times of 25% with only a 125 ms system reaction time. It also reduced the overall number of data transfers by 50%. Finally, the cat-tail buffering technique reduces the data-transfer latency between execution cores and main memory by 32.8% over the baseline technique when executing Multimodal Mean. This technique concurrently performs data transfers with code execution on individual cores, while maintaining global ordering through low-overhead scheduling to prevent collisions.Ph.D.Committee Chair: Wills, Scott; Committee Co-Chair: Wills, Linda; Committee Member: Bader, David; Committee Member: Davis, Jeff; Committee Member: Hamblen, James; Committee Member: Lanterman, Aaro
    corecore