3,767 research outputs found

    Embedded Trusted Monitoring and Management Modules for Smart Solar Panels

    Get PDF
    This paper investigates developing a prototype of smart solar panels. This architecture consists of a panel monitoring module and the central management unit. The monitoring module is to be embedded inside each PV panel making it secure to transfer the trusted data via Wi-Fi to the central Management unit (which can accommodate an array of PV panels in an installation). This module is required for data storage and provides the ability to upload secure data to the cloud. This platform presents the ability to securely manage large numbers of rooftop solar panels in a distributed ledger by implementing block chain algorithm. For achieving this purpose, Module 400 is envisaged to be turned into a Blockchain node as it provides the infrastructure to implement this technology

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    A survey on security analysis of machine learning-oriented hardware and software intellectual property

    Get PDF
    Intellectual Property (IP) includes ideas, innovations, methodologies, works of authorship (viz., literary and artistic works), emblems, brands, images, etc. This property is intangible since it is pertinent to the human intellect. Therefore, IP entities are indisputably vulnerable to infringements and modifications without the owner’s consent. IP protection regulations have been deployed and are still in practice, including patents, copyrights, contracts, trademarks, trade secrets, etc., to address these challenges. Unfortunately, these protections are insufficient to keep IP entities from being changed or stolen without permission. As for this, some IPs require hardware IP protection mechanisms, and others require software IP protection techniques. To secure these IPs, researchers have explored the domain of Intellectual Property Protection (IPP) using different approaches. In this paper, we discuss the existing IP rights and concurrent breakthroughs in the field of IPP research; provide discussions on hardware IP and software IP attacks and defense techniques; summarize different applications of IP protection; and lastly, identify the challenges and future research prospects in hardware and software IP security

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Satellite-matrix-switched, time-division-multiple-access network simulator

    Get PDF
    A versatile experimental Ka-band network simulator has been implemented at the NASA Lewis Research Center to demonstrate and evaluate a satellite-matrix-switched, time-division-multiple-access (SMS-TDMA) network and to evaluate future digital ground terminals and radiofrequency (RF) components. The simulator was implemented by using proof-of-concept RF components developed under NASA contracts and digital ground terminal and link simulation hardware developed at Lewis. This simulator provides many unique capabilities such as satellite range delay and variation simulation and rain fade simulation. All network parameters (e.g., signal-to-noise ratio, satellite range variation rate, burst density, and rain fade) are controlled and monitored by a central computer. The simulator is presently configured as a three-ground-terminal SMS-TDMA network

    Review of the environmental and organisational implications of cloud computing: final report.

    Get PDF
    Cloud computing – where elastic computing resources are delivered over the Internet by external service providers – is generating significant interest within HE and FE. In the cloud computing business model, organisations or individuals contract with a cloud computing service provider on a pay-per-use basis to access data centres, application software or web services from any location. This provides an elasticity of provision which the customer can scale up or down to meet demand. This form of utility computing potentially opens up a new paradigm in the provision of IT to support administrative and educational functions within HE and FE. Further, the economies of scale and increasingly energy efficient data centre technologies which underpin cloud services means that cloud solutions may also have a positive impact on carbon footprints. In response to the growing interest in cloud computing within UK HE and FE, JISC commissioned the University of Strathclyde to undertake a Review of the Environmental and Organisational Implications of Cloud Computing in Higher and Further Education [19]

    Accelerated Life Testing of Electronic Revenue Meters

    Get PDF
    Electricity meters are devices that continuously record electrical energy consumption. In the past, meters have been of electromechanical type and consisted windings and moving parts. Electromechanical meters tend to be bulky, less accurate and more susceptible to tampering. As with other aging power system infrastructure in the US, most electricity meters are around 40 years old and are nearing the end of their intended lifespan. Concerns over the accuracy of these electromechanical meters along with advances in technology have led to development of new electronic meters which have additional benefits such as light weight, tamper-proof mechanisms, harmonic detection and Advanced Metering Infrastructure (AMI) features. Utilities intend to spend millions of dollars over the next few years in replacing these aging electromechanical meters; however the new meters contain electronic parts that are typically more sensitive to environmental conditions and abnormal voltage conditions. The drive to replace older meters will not meet the expectations, either in terms of functionality or expected profits, if the new meters drift in accuracy or fail relatively quickly with respect to their electromechanical counterparts. In this thesis, reliability techniques that are used in the industry, for prediction of product quality information have been reviewed. Accelerated Life Test (ALT) plans have been developed to systematically study the effect of environmental stresses on electronic revenue meters by using degradation parameters, failure time distributions, and accelerating factors to predict their operational lifetime. A Human Machine Interface (HMI) was developed in LabVIEW to interface the data acquisition devices with software, and thus facilitate continuous monitoring of environmental parameters and the health of test specimens placed inside an environmental chamber. The HMI also has the capability of generating automated periodic reports and emails for review by management. Since the lab test data from accelerated life testing of electronic meters was yet to be obtained, the statistical analysis procedure, derived from literature review, was demonstrated with the help of ALT data from other electrical and electronic components. ALT data for cable insulation was obtained from literature and the failure data analysis was demonstrated, followed by an analysis of degradation data from LEDs. Finally, the causes of lack of data were analyzed and improvements in testing procedure were recommended
    • …
    corecore