19,898 research outputs found

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges

    A Time Comparison of Computer-Assisted and Manual Bathymetric Processing

    Get PDF
    We describe an experiment designed to determine the time required to process Multibeam Echosounder (MBES) data using the CUBE (Combined Uncertainty and Bathymetry Estimator) [Calder & Mayer, 2003; Calder, 2003] and Navigation Surface [Smith et al., 2002; Smith, 2003] algorithms. We collected data for a small (22.3xl06 soundings) survey in Valdez Narrows, Alaska, and monitored person-hours expended on processing for a traditional MBES processing stream and the proposed computer-assisted method operating on identical data. The analysis shows that the vast majority of time expended in a traditional processing stream is in subjective hand-editing of data, followed by line planning and quality control, and that the computer-assisted method is significantly faster than the traditional process through its elimination of human interaction time. The potential improvement in editing time is shown to be on the order of 25-37:1 over traditional methods

    Estimating Impact and Frequency of Risks to Safety and Mission Critical Systems Using CVSS

    Get PDF
    Many safety and mission critical systems depend on the correct and secure operation of both supportive and core software systems. E.g., both the safety of personnel and the effective execution of core missions on an oil platform depend on the correct recording storing, transfer and interpretation of data, such as that for the Logging While Drilling (LWD) and Measurement While Drilling (MWD) subsystems. Here, data is recorded on site, packaged and then transferred to an on-shore operational centre. Today, the data is transferred on dedicated communication channels to ensure a secure and safe transfer, free from deliberately and accidental faults. However, as the cost control is ever more important some of the transfer will be over remotely accessible infrastructure in the future. Thus, communication will be prone to known security vulnerabilities exploitable by outsiders. This paper presents a model that estimates risk level of known vulnerabilities as a combination of frequency and impact estimates derived from the Common Vulnerability Scoring System (CVSS). The model is implemented as a Bayesian Belief Network (BBN)

    In Homage of Change

    Get PDF
    corecore