52,670 research outputs found

    Security Evaluation of Cyber-Physical Systems in Society- Critical Internet of Things

    Get PDF
    In this paper, we present evaluation of security awareness of developers and users of cyber-physical systems. Our study includes interviews, workshops, surveys and one practical evaluation. We conducted 15 interviews and conducted survey with 55 respondents coming primarily from industry. Furthermore, we performed practical evaluation of current state of practice for a society-critical application, a commercial vehicle, and reconfirmed our findings discussing an attack vector for an off-line societycritical facility. More work is necessary to increase usage of security strategies, available methods, processes and standards. The security information, currently often insufficient, should be provided in the user manuals of products and services to protect system users. We confirmed it lately when we conducted an additional survey of users, with users feeling as left out in their quest for own security and privacy. Finally, hardware-related security questions begin to come up on the agenda, with a general increase of interest and awareness of hardware contribution to the overall cyber-physical security. At the end of this paper we discuss possible countermeasures for dealing with threats in infrastructures, highlighting the role of authorities in this quest

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Acoustic Integrity Codes: Secure Device Pairing Using Short-Range Acoustic Communication

    Full text link
    Secure Device Pairing (SDP) relies on an out-of-band channel to authenticate devices. This requires a common hardware interface, which limits the use of existing SDP systems. We propose to use short-range acoustic communication for the initial pairing. Audio hardware is commonly available on existing off-the-shelf devices and can be accessed from user space without requiring firmware or hardware modifications. We improve upon previous approaches by designing Acoustic Integrity Codes (AICs): a modulation scheme that provides message authentication on the acoustic physical layer. We analyze their security and demonstrate that we can defend against signal cancellation attacks by designing signals with low autocorrelation. Our system can detect overshadowing attacks using a ternary decision function with a threshold. In our evaluation of this SDP scheme's security and robustness, we achieve a bit error ratio below 0.1% for a net bit rate of 100 bps with a signal-to-noise ratio (SNR) of 14 dB. Using our open-source proof-of-concept implementation on Android smartphones, we demonstrate pairing between different smartphone models.Comment: 11 pages, 11 figures. Published at ACM WiSec 2020 (13th ACM Conference on Security and Privacy in Wireless and Mobile Networks). Updated reference

    Designing and Operating Safe and Secure Transit Systems: Assessing Current Practices in the United States and Abroad, MTI Report 04-05

    Get PDF
    Public transit systems around the world have for decades served as a principal venue for terrorist acts. Today, transit security is widely viewed as an important public policy issue and is a high priority at most large transit systems and at smaller systems operating in large metropolitan areas. Research on transit security in the United States has mushroomed since 9/11; this study is part of that new wave of research. This study contributes to our understanding of transit security by (1) reviewing and synthesizing nearly all previously published research on transit terrorism; (2) conducting detailed case studies of transit systems in London, Madrid, New York, Paris, Tokyo, and Washington, D.C.; (3) interviewing federal officials here in the United States responsible for overseeing transit security and transit industry representatives both here and abroad to learn about efforts to coordinate and finance transit security planning; and (4) surveying 113 of the largest transit operators in the United States. Our major findings include: (1) the threat of transit terrorism is probably not universal—most major attacks in the developed world have been on the largest systems in the largest cities; (2) this asymmetry of risk does not square with fiscal politics that seek to spread security funding among many jurisdictions; (3) transit managers are struggling to balance the costs and (uncertain) benefits of increased security against the costs and (certain) benefits of attracting passengers; (4) coordination and cooperation between security and transit agencies is improving, but far from complete; (5) enlisting passengers in surveillance has benefits, but fearful passengers may stop using public transit; (6) the role of crime prevention through environmental design in security planning is waxing; and (7) given the uncertain effectiveness of antitransit terrorism efforts, the most tangible benefits of increased attention to and spending on transit security may be a reduction in transit-related person and property crimes

    The Use of Firewalls in an Academic Environment

    No full text

    LO-FAT: Low-Overhead Control Flow ATtestation in Hardware

    Full text link
    Attacks targeting software on embedded systems are becoming increasingly prevalent. Remote attestation is a mechanism that allows establishing trust in embedded devices. However, existing attestation schemes are either static and cannot detect control-flow attacks, or require instrumentation of software incurring high performance overheads. To overcome these limitations, we present LO-FAT, the first practical hardware-based approach to control-flow attestation. By leveraging existing processor hardware features and commonly-used IP blocks, our approach enables efficient control-flow attestation without requiring software instrumentation. We show that our proof-of-concept implementation based on a RISC-V SoC incurs no processor stalls and requires reasonable area overhead.Comment: Authors' pre-print version to appear in DAC 2017 proceeding

    Mobile Application Security Platforms Survey

    Get PDF
    Nowadays Smartphone and other mobile devices have become incredibly important in every aspect of our life. Because they have practically offered same capabilities as desktop workstations as well as come to be powerful in terms of CPU (Central processing Unit), Storage and installing numerous applications. Therefore, Security is considered as an important factor in wireless communication technologies, particularly in a wireless ad-hoc network and mobile operating systems. Moreover, based on increasing the range of mobile application within variety of platforms, security is regarded as on the most valuable and considerable debate in terms of issues, trustees, reliabilities and accuracy. This paper aims to introduce a consolidated report of thriving security on mobile application platforms and providing knowledge of vital threats to the users and enterprises. Furthermore, in this paper, various techniques as well as methods for security measurements, analysis and prioritization within the peak of mobile platforms will be presented. Additionally, increases understanding and awareness of security on mobile application platforms to avoid detection, forensics and countermeasures used by the operating systems. Finally, this study also discusses security extensions for popular mobile platforms and analysis for a survey within a recent research in the area of mobile platform security
    • …
    corecore