72 research outputs found

    Extracting correlated parameters on multicore architectures

    Get PDF
    16 pagesInternational audienceIn this paper, we present a new approach relevant to the discovery of correlated patterns, based on the use of multicore architectures. Our work rests on a full KDD system and allows one to extract Decision Correlation Rules based on the Chi-squared criterion that include a target column from any database. To achieve this objective, we use a levelwise algorithm as well as contingency vectors, an alternate and more powerful representation of contingency tables, in order to prune the search space. The goal is to parallelize the processing associated with the extraction of relevant rules. The parallelization invokes the PPL (Parallel Patterns Library), which allows a simultaneous access to the whole available cores / processors on modern computers. We nally present rst results on the reached performance gains

    Frequent itemset mining on multiprocessor systems

    Get PDF
    Frequent itemset mining is an important building block in many data mining applications like market basket analysis, recommendation, web-mining, fraud detection, and gene expression analysis. In many of them, the datasets being mined can easily grow up to hundreds of gigabytes or even terabytes of data. Hence, efficient algorithms are required to process such large amounts of data. In recent years, there have been many frequent-itemset mining algorithms proposed, which however (1) often have high memory requirements and (2) do not exploit the large degrees of parallelism provided by modern multiprocessor systems. The high memory requirements arise mainly from inefficient data structures that have only been shown to be sufficient for small datasets. For large datasets, however, the use of these data structures force the algorithms to go out-of-core, i.e., they have to access secondary memory, which leads to serious performance degradations. Exploiting available parallelism is further required to mine large datasets because the serial performance of processors almost stopped increasing. Algorithms should therefore exploit the large number of available threads and also the other kinds of parallelism (e.g., vector instruction sets) besides thread-level parallelism. In this work, we tackle the high memory requirements of frequent itemset mining twofold: we (1) compress the datasets being mined because they must be kept in main memory during several mining invocations and (2) improve existing mining algorithms with memory-efficient data structures. For compressing the datasets, we employ efficient encodings that show a good compression performance on a wide variety of realistic datasets, i.e., the size of the datasets is reduced by up to 6.4x. The encodings can further be applied directly while loading the dataset from disk or network. Since encoding and decoding is repeatedly required for loading and mining the datasets, we reduce its costs by providing parallel encodings that achieve high throughputs for both tasks. For a memory-efficient representation of the mining algorithms’ intermediate data, we propose compact data structures and even employ explicit compression. Both methods together reduce the intermediate data’s size by up to 25x. The smaller memory requirements avoid or delay expensive out-of-core computation when large datasets are mined. For coping with the high parallelism provided by current multiprocessor systems, we identify the performance hot spots and scalability issues of existing frequent-itemset mining algorithms. The hot spots, which form basic building blocks of these algorithms, cover (1) counting the frequency of fixed-length strings, (2) building prefix trees, (3) compressing integer values, and (4) intersecting lists of sorted integer values or bitmaps. For all of them, we discuss how to exploit available parallelism and provide scalable solutions. Furthermore, almost all components of the mining algorithms must be parallelized to keep the sequential fraction of the algorithms as small as possible. We integrate the parallelized building blocks and components into three well-known mining algorithms and further analyze the impact of certain existing optimizations. Our algorithms are already single-threaded often up an order of magnitude faster than existing highly optimized algorithms and further scale almost linear on a large 32-core multiprocessor system. Although our optimizations are intended for frequent-itemset mining algorithms, they can be applied with only minor changes to algorithms that are used for mining of other types of itemsets

    Parallel Mining of Association Rules Using a Lattice Based Approach

    Get PDF
    The discovery of interesting patterns from database transactions is one of the major problems in knowledge discovery in database. One such interesting pattern is the association rules extracted from these transactions. Parallel algorithms are required for the mining of association rules due to the very large databases used to store the transactions. In this paper we present a parallel algorithm for the mining of association rules. We implemented a parallel algorithm that used a lattice approach for mining association rules. The Dynamic Distributed Rule Mining (DDRM) is a lattice-based algorithm that partitions the lattice into sublattices to be assigned to processors for processing and identification of frequent itemsets. Experimental results show that DDRM utilizes the processors efficiently and performed better than the prefix-based and partition algorithms that use a static approach to assign classes to the processors. The DDRM algorithm scales well and shows good speedup

    Multicore Mining of Correlated Patterns

    Get PDF
    6 pagesInternational audienceIn this paper, we present a new approach relevant to the discovery of correlated patterns, based on the use of multicore architectures. Our work rests on a full KDD system and allows one to extract Decision Correlation Rules based on the Chi-squared criterion that include a target column from any database. To achieve this objective, we use a levelwise algorithm as well as contingency vectors, an alternate and more powerful representation of contingency tables, in order to prune the search space. The goal is to parallelize the processing associated with the extraction of relevant rules. The parallelization invokes the PPL (Parallel Patterns Library), which allows a simultaneous access to the whole available cores / processors on modern computers. We finally present first results on the reached performance gains

    Frequent Itemset Mining for Big Data

    Get PDF
    Traditional data mining tools, developed to extract actionable knowledge from data, demonstrated to be inadequate to process the huge amount of data produced nowadays. Even the most popular algorithms related to Frequent Itemset Mining, an exploratory data analysis technique used to discover frequent items co-occurrences in a transactional dataset, are inefficient with larger and more complex data. As a consequence, many parallel algorithms have been developed, based on modern frameworks able to leverage distributed computation in commodity clusters of machines (e.g., Apache Hadoop, Apache Spark). However, frequent itemset mining parallelization is far from trivial. The search-space exploration, on which all the techniques are based, is not easily partitionable. Hence, distributed frequent itemset mining is a challenging problem and an interesting research topic. In this context, our main contributions consist in an (i) exhaustive theoretical and experimental analysis of the best-in-class approaches, whose outcomes and open issues motivated (ii) the development of a distributed high-dimensional frequent itemset miner. The dissertation introduces also a data mining framework which takes strongly advantage of distributed frequent itemset mining for the extraction of a specific type of itemsets (iii). The theoretical analysis highlights the challenges related to the distribution and the preliminary partitioning of the frequent itemset mining problem (i.e. the search-space exploration) describing the most adopted distribution strategies. The extensive experimental campaign, instead, compares the expectations related to the algorithmic choices against the actual performances of the algorithms. We run more than 300 experiments in order to evaluate and discuss the performances of the algorithms with respect to different real life use cases and data distributions. The outcomes of the review is that no algorithm is universally superior and performances are heavily skewed by the data distribution. Moreover, we were able to identify a concrete lack as regards frequent pattern extraction within high-dimensional use cases. For this reason, we have developed our own distributed high-dimensional frequent itemset miner based on Apache Hadoop. The algorithm splits the search-space exploration into independent sub-tasks. However, since the exploration strongly benefits of a full-knowledge of the problem, we introduced an interleaving synchronization phase. The result is a trade-off between the benefits of a centralized state and the ones related to the additional computational power due to parallelism. The experimental benchmarks, performed on real-life high-dimensional use cases, show the efficiency of the proposed approach in terms of execution time, load balancing and reliability to memory issues. Finally, the dissertation introduces a data mining framework in which distributed itemset mining is a fundamental component of the processing pipeline. The aim of the framework is the extraction of a new type of itemsets, called misleading generalized itemsets

    High Performance Frequent Subgraph Mining on Transactional Datasets

    Get PDF
    Graph data mining has been a crucial as well as inevitable area of research. Large amounts of graph data are produced in many areas, such as Bioinformatics, Cheminformatics, Social Networks, and Web etc. Scalable graph data mining methods are getting increasingly popular and necessary due to increased graph complexities. Frequent subgraph mining is one such area where the task is to find overly recurring patterns/subgraphs. To tackle this problem, many main memory-based methods were proposed, which proved to be inefficient as the data size grew exponentially over time. In the past few years several research groups have attempted to handle the frequent subgraph mining (FSM) problem in multiple ways. Many authors have tried to achieve better performance using Graphic Processing Units (GPUs) which has multi-fold improvement over in-memory while dealing with large datasets. Later, Google\u27s MapReduce model with the Hadoop framework proved to be a major breakthrough in high performance large batch processing. Although MapReduce came with many benefits, its disk I/O and non-iterative style model could not help much for FSM domain since subgraph mining process is an iterative approach. In recent years, Spark has emerged to be the De Facto industry standard with its distributed in-memory computing capability. This is a right fit solution for iterative style of programming as well. In this work, we cover how high-performance computing has helped in improving the performance tremendously in the transactional directed and undirected aspect of graphs and performance comparisons of various FSM techniques are done based on experimental results

    Frequent Itemsets Mining for Big Data: A Comparative Analysis

    Get PDF
    Itemset mining is a well-known exploratory data mining technique used to discover interesting correlations hidden in a data collection. Since it supports different targeted analyses, it is profitably exploited in a wide range of different domains, ranging from network traffic data to medical records. With the increasing amount of generated data, different scalable algorithms have been developed, exploiting the advantages of distributed computing frameworks, such as Apache Hadoop and Spark. This paper reviews Hadoop- and Spark-based scalable algorithms addressing the frequent itemset mining problem in the Big Data domain through both theoretical and experimental comparative analyses. Since the itemset mining task is computationally expensive, its distribution and parallelization strategies heavily affect memory usage, load balancing, and communication costs. A detailed discussion of the algorithmic choices of the distributed methods for frequent itemset mining is followed by an experimental analysis comparing the performance of state-of-the-art distributed implementations on both synthetic and real datasets. The strengths and weaknesses of the algorithms are thoroughly discussed with respect to the dataset features (e.g., data distribution, average transaction length, number of records), and specific parameter settings. Finally, based on theoretical and experimental analyses, open research directions for the parallelization of the itemset mining problem are presented

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF
    • …
    corecore