644 research outputs found

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil

    Exploring Hyperspectral Imaging and 3D Convolutional Neural Network for Stress Classification in Plants

    Get PDF
    Hyperspectral imaging (HSI) has emerged as a transformative technology in imaging, characterized by its ability to capture a wide spectrum of light, including wavelengths beyond the visible range. This approach significantly differs from traditional imaging methods such as RGB imaging, which uses three color channels, and multispectral imaging, which captures several discrete spectral bands. Through this approach, HSI offers detailed spectral signatures for each pixel, facilitating a more nuanced analysis of the imaged subjects. This capability is particularly beneficial in applications like agricultural practices, where it can detect changes in physiological and structural characteristics of crops. Moreover, the ability of HSI to monitor these changes over time is advantageous for observing how subjects respond to different environmental conditions or treatments. However, the high-dimensional nature of hyperspectral data presents challenges in data processing and feature extraction. Traditional machine learning algorithms often struggle to handle such complexity. This is where 3D Convolutional Neural Networks (CNNs) become valuable. Unlike 1D-CNNs, which extract features from spectral dimensions, and 2D-CNNs, which focus on spatial dimensions, 3D CNNs have the capability to process data across both spectral and spatial dimensions. This makes them adept at extracting complex features from hyperspectral data. In this thesis, we explored the potency of HSI combined with 3D-CNN in agriculture domain where plant health and vitality are paramount. To evaluate this, we subjected lettuce plants to varying stress levels to assess the performance of this method in classifying the stressed lettuce at the early stages of growth into their respective stress-level groups. For this study, we created a dataset comprising 88 hyperspectral image samples of stressed lettuce. Utilizing Bayesian optimization, we developed 350 distinct 3D-CNN models to assess the method. The top-performing model achieved a 75.00\% test accuracy. Additionally, we addressed the challenge of generating valid 3D-CNN models in the Keras Tuner library through meticulous hyperparameter configuration. Our investigation also extends to the role of individual channels and channel groups within the color and near-infrared spectrum in predicting results for each stress-level group. We observed that the red and green spectra have a higher influence on the prediction results. Furthermore, we conducted a comprehensive review of 3D-CNN-based classification techniques for diseased and defective crops using non-UAV-based hyperspectral images.MITACSMaster of Science in Applied Computer Scienc

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    Tiny Classifier Circuits: Evolving Accelerators for Tabular Data

    Full text link
    A typical machine learning (ML) development cycle for edge computing is to maximise the performance during model training and then minimise the memory/area footprint of the trained model for deployment on edge devices targeting CPUs, GPUs, microcontrollers, or custom hardware accelerators. This paper proposes a methodology for automatically generating predictor circuits for classification of tabular data with comparable prediction performance to conventional ML techniques while using substantially fewer hardware resources and power. The proposed methodology uses an evolutionary algorithm to search over the space of logic gates and automatically generates a classifier circuit with maximised training prediction accuracy. Classifier circuits are so tiny (i.e., consisting of no more than 300 logic gates) that they are called "Tiny Classifier" circuits, and can efficiently be implemented in ASIC or on an FPGA. We empirically evaluate the automatic Tiny Classifier circuit generation methodology or "Auto Tiny Classifiers" on a wide range of tabular datasets, and compare it against conventional ML techniques such as Amazon's AutoGluon, Google's TabNet and a neural search over Multi-Layer Perceptrons. Despite Tiny Classifiers being constrained to a few hundred logic gates, we observe no statistically significant difference in prediction performance in comparison to the best-performing ML baseline. When synthesised as a Silicon chip, Tiny Classifiers use 8-18x less area and 4-8x less power. When implemented as an ultra-low cost chip on a flexible substrate (i.e., FlexIC), they occupy 10-75x less area and consume 13-75x less power compared to the most hardware-efficient ML baseline. On an FPGA, Tiny Classifiers consume 3-11x fewer resources.Comment: 14 pages, 16 figure

    A Survey on Approximate Multiplier Designs for Energy Efficiency: From Algorithms to Circuits

    Full text link
    Given the stringent requirements of energy efficiency for Internet-of-Things edge devices, approximate multipliers, as a basic component of many processors and accelerators, have been constantly proposed and studied for decades, especially in error-resilient applications. The computation error and energy efficiency largely depend on how and where the approximation is introduced into a design. Thus, this article aims to provide a comprehensive review of the approximation techniques in multiplier designs ranging from algorithms and architectures to circuits. We have implemented representative approximate multiplier designs in each category to understand the impact of the design techniques on accuracy and efficiency. The designs can then be effectively deployed in high-level applications, such as machine learning, to gain energy efficiency at the cost of slight accuracy loss.Comment: 38 pages, 37 figure

    Finite State Automata Design using 1T1R ReRAM Crossbar

    Full text link
    Data movement costs constitute a significant bottleneck in modern machine learning (ML) systems. When combined with the computational complexity of algorithms, such as neural networks, designing hardware accelerators with low energy footprint remains challenging. Finite state automata (FSA) constitute a type of computation model used as a low-complexity learning unit in ML systems. The implementation of FSA consists of a number of memory states. However, FSA can be in one of the states at a given time. It switches to another state based on the present state and input to the FSA. Due to its natural synergy with memory, it is a promising candidate for in-memory computing for reduced data movement costs. This work focuses on a novel FSA implementation using resistive RAM (ReRAM) for state storage in series with a CMOS transistor for biasing controls. We propose using multi-level ReRAM technology capable of transitioning between states depending on bias pulse amplitude and duration. We use an asynchronous control circuit for writing each ReRAM-transistor cell for the on-demand switching of the FSA. We investigate the impact of the device-to-device and cycle-to-cycle variations on the cell and show that FSA transitions can be seamlessly achieved without degradation of performance. Through extensive experimental evaluation, we demonstrate the implementation of FSA on 1T1R ReRAM crossbar

    Design and Development of Biofeedback Stick Technology (BfT) to Improve the Quality of Life of Walking Stick Users

    Get PDF
    Biomedical engineering has seen a rapid growth in recent times, where the aim to facilitate and equip humans with the latest technology has become widespread globally. From high-tech equipment ranging from CT scanners, MRI equipment, and laser treatments, to the design, creation, and implementation of artificial body parts, the field of biomedical engineering has significantly contributed to mankind. Biomedical engineering has facilitated many of the latest developments surrounding human mobility, with advancement in mobility aids improving human movement for people with compromised mobility either caused by an injury or health condition. A review of the literature indicated that mobility aids, especially walking sticks, and appropriate training for their use, are generally prescribed by allied health professionals (AHP) to walking stick users for rehabilitation and activities of daily living (ADL). However, feedback from AHP is limited to the clinical environment, leaving walking stick users vulnerable to falls and injuries due to incorrect usage. Hence, to mitigate the risk of falls and injuries, and to facilitate a routine appraisal of individual patient’s usage, a simple, portable, robust, and reliable tool was developed which provides the walking stick users with real-time feedback upon incorrect usage during their activities of daily living (ADL). This thesis aimed to design and develop a smart walking stick technology: Biofeedback stick technology (BfT). The design incorporates the approach of patient and public involvement (PPI) in the development of BfT to ensure that BfT was developed as per the requirements of walking stick users and AHP recommendations. The newly developed system was tested quantitatively for; validity, reliability, and reproducibility against gold standard equipment such as the 3D motion capture system, force plates, optical measurement system for orientation, weight bearing, and step count. The system was also tested qualitatively for its usability by conducting semi-informal interviews with AHPs and walking stick users. The results of these studies showed that the newly developed system has good accuracy, reported above 95% with a maximum inaccuracy of 1°. The data reported indicates good reproducibility. The angles, weight, and steps recorded by the system during experiments are within the values published in the literature. From these studies, it was concluded that, BfT has the potential to improve the lives of walking stick users and that, with few additional improvements, appropriate approval from relevant regulatory bodies, and robust clinical testing, the technology has a huge potential to carve its way to a commercial market

    Multiparametric Magnetic Resonance Imaging Artificial Intelligence Pipeline for Oropharyngeal Cancer Radiotherapy Treatment Guidance

    Get PDF
    Oropharyngeal cancer (OPC) is a widespread disease and one of the few domestic cancers that is rising in incidence. Radiographic images are crucial for assessment of OPC and aid in radiotherapy (RT) treatment. However, RT planning with conventional imaging approaches requires operator-dependent tumor segmentation, which is the primary source of treatment error. Further, OPC expresses differential tumor/node mid-RT response (rapid response) rates, resulting in significant differences between planned and delivered RT dose. Finally, clinical outcomes for OPC patients can also be variable, which warrants the investigation of prognostic models. Multiparametric MRI (mpMRI) techniques that incorporate simultaneous anatomical and functional information coupled to artificial intelligence (AI) approaches could improve clinical decision support for OPC by providing immediately actionable clinical rationale for adaptive RT planning. If tumors could be reproducibly segmented, rapid response could be classified, and prognosis could be reliably determined, overall patient outcomes would be optimized to improve the therapeutic index as a function of more risk-adapted RT volumes. Consequently, there is an unmet need for automated and reproducible imaging which can simultaneously segment tumors and provide predictive value for actionable RT adaptation. This dissertation primarily seeks to explore and optimize image processing, tumor segmentation, and patient outcomes in OPC through a combination of advanced imaging techniques and AI algorithms. In the first specific aim of this dissertation, we develop and evaluate mpMRI pre-processing techniques for use in downstream segmentation, response prediction, and outcome prediction pipelines. Various MRI intensity standardization and registration approaches were systematically compared and benchmarked. Moreover, synthetic image algorithms were developed to decrease MRI scan time in an effort to optimize our AI pipelines. We demonstrated that proper intensity standardization and image registration can improve mpMRI quality for use in AI algorithms, and developed a novel method to decrease mpMRI acquisition time. Subsequently, in the second specific aim of this dissertation, we investigated underlying questions regarding the implementation of RT-related auto-segmentation. Firstly, we quantified interobserver variability for an unprecedented large number of observers for various radiotherapy structures in several disease sites (with a particular emphasis on OPC) using a novel crowdsourcing platform. We then trained an AI algorithm on a series of extant matched mpMRI datasets to segment OPC primary tumors. Moreover, we validated and compared our best model\u27s performance to clinical expert observers. We demonstrated that AI-based mpMRI OPC tumor auto-segmentation offers decreased variability and comparable accuracy to clinical experts, and certain mpMRI input channel combinations could further improve performance. Finally, in the third specific aim of this dissertation, we predicted OPC primary tumor mid-therapy (rapid) treatment response and prognostic outcomes. Using co-registered pre-therapy and mid-therapy primary tumor manual segmentations of OPC patients, we generated and characterized treatment sensitive and treatment resistant pre-RT sub-volumes. These sub-volumes were used to train an AI algorithm to predict individual voxel-wise treatment resistance. Additionally, we developed an AI algorithm to predict OPC patient progression free survival using pre-therapy imaging from an international data science competition (ranking 1st place), and then translated these approaches to mpMRI data. We demonstrated AI models could be used to predict rapid response and prognostic outcomes using pre-therapy imaging, which could help guide treatment adaptation, though further work is needed. In summary, the completion of these aims facilitates the development of an image-guided fully automated OPC clinical decision support tool. The resultant deliverables from this project will positively impact patients by enabling optimized therapeutic interventions in OPC. Future work should consider investigating additional imaging timepoints, imaging modalities, uncertainty quantification, perceptual and ethical considerations, and prospective studies for eventual clinical implementation. A dynamic version of this dissertation is publicly available and assigned a digital object identifier through Figshare (doi: 10.6084/m9.figshare.22141871)
    corecore