4 research outputs found

    Hardware Acceleration in Genode OS Using Dynamic Partial Reconfiguration

    Get PDF
    Algorithms with operations on large regular data structures such as image processing can be highly accelerated when executed as hardware tasks in an FPGA fabric. The Dynamic Partial Reconfiguration (DPR) feature of new SRAM-based FPGA families allows a dynamic swapping and replacement of hardware tasks during runtime. Particularly embedded systems with processing chains that change over time or that are too large to be implemented in an FPGA fabric in parallel, benefit from DPR. In this paper we present a complete framework for hardware acceleration using DPR in the microkernel based Genode OS. This makes the DPR feature available not only for the high-performance computing field, but also for safety-critical applications. The new framework is evaluated for an exemplary imaging application running on a Xilinx Zynq-7000 SoC

    Hardware and Software Task Scheduling for ARM-FPGA Platforms

    Get PDF
    ARM-FPGA coupled platforms allow accelerating the computation of specific algorithms by executing them in the FPGA fabric. Several computation steps of our case study for a stereo vision application have been accelerated by hardware implementations. Dynamic Partial Reconfiguration places these hardware tasks in the programmable logic at appropriate times. For an efficient scheduling, it needs to be decided when and where to execute a task. Although there already exist hardware/software scheduling strategies and algorithms, none exploit all possible optimization techniques: re-use, prefetching, parallelization, and pipelining of hardware tasks. The scheduling algorithm proposed in this paper takes this into account and optimizes for the objectives latency/throughput and power/energy

    Demonstrating Controlled Change for Autonomous Space Vehicles

    Get PDF
    Recent research discusses concepts of infield changes to overcome the drawbacks of conventional lab-based system design processes. In this paper, we evaluate the concept of controlled change by applying it to a demonstration of a potential future space exploration scenario with mobile robots. The robots are capable of executing several image computations for exploration, object detection and pose estimation, which can be allocated to both FPGA-and processor resources of a System-on-Chip. The demonstrator addresses three scenarios which cover application-, environment-, and platform change. The system adapts itself to any of the named changes. This capability can increase the autonomy of future space missions. Exemplary, the demonstrator executes adaption of applications during operation to fulfill the mission goals, adaption of reliability under changing environment conditions, and adaption to sensor failure

    Secure and safe virtualization-based framework for embedded systems development

    Get PDF
    Tese de Doutoramento - Programa Doutoral em Engenharia Electrónica e de Computadores (PDEEC)The Internet of Things (IoT) is here. Billions of smart, connected devices are proliferating at rapid pace in our key infrastructures, generating, processing and exchanging vast amounts of security-critical and privacy-sensitive data. This strong connectivity of IoT environments demands for a holistic, end-to-end security approach, addressing security and privacy risks across different abstraction levels: device, communications, cloud, and lifecycle managment. Security at the device level is being misconstrued as the addition of features in a late stage of the system development. Several software-based approaches such as microkernels, and virtualization have been used, but it is proven, per se, they fail in providing the desired security level. As a step towards the correct operation of these devices, it is imperative to extend them with new security-oriented technologies which guarantee security from the outset. This thesis aims to conceive and design a novel security and safety architecture for virtualized systems by 1) evaluating which technologies are key enablers for scalable and secure virtualization, 2) designing and implementing a fully-featured virtualization environment providing hardware isolation 3) investigating which "hard entities" can extend virtualization to guarantee the security requirements dictated by confidentiality, integrity, and availability, and 4) simplifying system configurability and integration through a design ecosystem supported by a domain-specific language. The developed artefacts demonstrate: 1) why ARM TrustZone is nowadays a reference technology for security, 2) how TrustZone can be adequately exploited for virtualization in different use-cases, 3) why the secure boot process, trusted execution environment and other hardware trust anchors are essential to establish and guarantee a complete root and chain of trust, and 4) how a domain-specific language enables easy design, integration and customization of a secure virtualized system assisted by the above mentioned building blocks.Vivemos na era da Internet das Coisas (IoT). Biliões de dispositivos inteligentes começam a proliferar nas nossas infraestruturas chave, levando ao processamento de avolumadas quantidades de dados privados e sensíveis. Esta forte conectividade inerente ao conceito IoT necessita de uma abordagem holística, em que os riscos de privacidade e segurança são abordados nas diferentes camadas de abstração: dispositivo, comunicações, nuvem e ciclo de vida. A segurança ao nível dos dispositivos tem sido erradamente assegurada pela inclusão de funcionalidades numa fase tardia do desenvolvimento. Têm sido utilizadas diversas abordagens de software, incluindo a virtualização, mas está provado que estas não conseguem garantir o nível de segurança desejado. De forma a garantir a correta operação dos dispositivos, é fundamental complementar os mesmos com novas tecnologias que promovem a segurança desde os primeiros estágios de desenvolvimento. Esta tese propõe, assim, o desenvolvimento de uma solução arquitetural inovadora para sistemas virtualizados seguros, contemplando 1) a avaliação de tecnologias chave que promovam tal realização, 2) a implementação de uma solução de virtualização garantindo isolamento por hardware, 3) a identificação de componentes que integrados permitirão complementar a virtualização para garantir os requisitos de segurança, e 4) a simplificação do processo de configuração e integração da solução através de um ecossistema suportado por uma linguagem de domínio específico. Os artefactos desenvolvidos demonstram: 1) o porquê da tecnologia ARM TrustZone ser uma tecnologia de referência para a segurança, 2) a efetividade desta tecnologia quando utilizada em diferentes domínios, 3) o porquê do processo seguro de inicialização, juntamente com um ambiente de execução seguro e outros componentes de hardware, serem essenciais para estabelecer uma cadeia de confiança, e 4) a viabilidade em utilizar uma linguagem de um domínio específico para configurar e integrar um ambiente virtualizado suportado pelos artefactos supramencionados
    corecore