115 research outputs found

    Pivot Selection for Median String Problem

    Full text link
    The Median String Problem is W[1]-Hard under the Levenshtein distance, thus, approximation heuristics are used. Perturbation-based heuristics have been proved to be very competitive as regards the ratio approximation accuracy/convergence speed. However, the computational burden increase with the size of the set. In this paper, we explore the idea of reducing the size of the problem by selecting a subset of representative elements, i.e. pivots, that are used to compute the approximate median instead of the whole set. We aim to reduce the computation time through a reduction of the problem size while achieving similar approximation accuracy. We explain how we find those pivots and how to compute the median string from them. Results on commonly used test data suggest that our approach can reduce the computational requirements (measured in computed edit distances) by 88\% with approximation accuracy as good as the state of the art heuristic. This work has been supported in part by CONICYT-PCHA/Doctorado Nacional/2014631400742014-63140074 through a Ph.D. Scholarship; Universidad Cat\'{o}lica de la Sant\'{i}sima Concepci\'{o}n through the research project DIN-01/2016; European Union's Horizon 2020 under the Marie Sk\l odowska-Curie grant agreement 690941690941; Millennium Institute for Foundational Research on Data (IMFD); FONDECYT-CONICYT grant number 11704971170497; and for O. Pedreira, Xunta de Galicia/FEDER-UE refs. CSI ED431G/01 and GRC: ED431C 2017/58

    The Fine-Grained Complexity of Median and Center String Problems Under Edit Distance

    Get PDF
    We present the first fine-grained complexity results on two classic problems on strings. The first one is the k-Median-Edit-Distance problem, where the input is a collection of k strings, each of length at most n, and the task is to find a new string that minimizes the sum of the edit distances from itself to all other strings in the input. Arising frequently in computational biology, this problem provides an important generalization of edit distance to multiple strings and is similar to the multiple sequence alignment problem in bioinformatics. We demonstrate that for any ? > 0 and k ? 2, an O(n^{k-?}) time solution for the k-Median-Edit-Distance problem over an alphabet of size O(k) refutes the Strong Exponential Time Hypothesis (SETH). This provides the first matching conditional lower bound for the O(n^k) time algorithm established in 1975 by Sankoff. The second problem we study is the k-Center-Edit-Distance problem. Here also, the input is a collection of k strings, each of length at most n. The task is to find a new string that minimizes the maximum edit distance from itself to any other string in the input. We prove that the same conditional lower bound as before holds. Our results also imply new conditional lower bounds for the k-Tree-Alignment and the k-Bottleneck-Tree-Alignment problems studied in phylogenetics

    On Complexity of 1-Center in Various Metrics

    Get PDF
    We consider the classic 1-center problem: Given a set P of n points in a metric space find the point in P that minimizes the maximum distance to the other points of P. We study the complexity of this problem in d-dimensional p\ell_p-metrics and in edit and Ulam metrics over strings of length d. Our results for the 1-center problem may be classified based on d as follows. \bullet Small d: We provide the first linear-time algorithm for 1-center problem in fixed-dimensional 1\ell_1 metrics. On the other hand, assuming the hitting set conjecture (HSC), we show that when d=ω(logn)d=\omega(\log n), no subquadratic algorithm can solve 1-center problem in any of the p\ell_p-metrics, or in edit or Ulam metrics. \bullet Large d. When d=Ω(n)d=\Omega(n), we extend our conditional lower bound to rule out sub quartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a (1+ϵ)(1+\epsilon)-approximation for 1-center in Ulam metric with running time Oϵ~(nd+n2d)\tilde{O_{\epsilon}}(nd+n^2\sqrt{d}). We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension d, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of n strings each of length n, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set

    Boosting Perturbation-Based Iterative Algorithms to Compute the Median String

    Get PDF
    [Abstract] The most competitive heuristics for calculating the median string are those that use perturbation-based iterative algorithms. Given the complexity of this problem, which under many formulations is NP-hard, the computational cost involved in the exact solution is not affordable. In this work, the heuristic algorithms that solve this problem are addressed, emphasizing its initialization and the policy to order possible editing operations. Both factors have a significant weight in the solution of this problem. Initial string selection influences the algorithm’s speed of convergence, as does the criterion chosen to select the modification to be made in each iteration of the algorithm. To obtain the initial string, we use the median of a subset of the original dataset; to obtain this subset, we employ the Half Space Proximal (HSP) test to the median of the dataset. This test provides sufficient diversity within the members of the subset while at the same time fulfilling the centrality criterion. Similarly, we provide an analysis of the stop condition of the algorithm, improving its performance without substantially damaging the quality of the solution. To analyze the results of our experiments, we computed the execution time of each proposed modification of the algorithms, the number of computed editing distances, and the quality of the solution obtained. With these experiments, we empirically validated our proposal.This work was supported in part by the Comisión Nacional de Investigación Científica y Tecnológica - Programa de Formación de Capital Humano Avanzado (CONICYT-PCHA)/Doctorado Nacional/2014-63140074 through the Ph.D. Scholarship, in part by the European Union's Horizon 2020 under the Marie Sklodowska-Curie under Grant 690941, in part by the Millennium Institute for Foundational Research on Data (IMFD), and in part by the FONDECYT-CONICYT under Grant 1170497. The work of ÓSCAR PEDREIRA was supported in part by the Xunta de Galicia/FEDER-UE refs under Grant CSI ED431G/01 and Grant GRC: ED431C 2017/58, in part by the Office of the Vice President for Research and Postgraduate Studies of the Universidad Católica de Temuco, VIPUCT Project 2020EM-PS-08, and in part by the FEQUIP 2019-INRN-03 of the Universidad Católica de TemucoXunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2017/58Chile. Comisión Nacional de Investigación Científica y Tecnológica; 2014-63140074Chile. Comisión Nacional de Investigación Científica y Tecnológica; 1170497Universidad Católica de Temuco (Chile); 2020EM-PS-08Universidad Católica de Temuco (Chile); 2019-INRN-0

    Summarizing Diverging String Sequences, with Applications to Chain-Letter Petitions

    Get PDF
    Algorithms to find optimal alignments among strings, or to find a parsimonious summary of a collection of strings, are well studied in a variety of contexts, addressing a wide range of interesting applications. In this paper, we consider chain letters, which contain a growing sequence of signatories added as the letter propagates. The unusual constellation of features exhibited by chain letters (one-ended growth, divergence, and mutation) make their propagation, and thus the corresponding reconstruction problem, both distinctive and rich. Here, inspired by these chain letters, we formally define the problem of computing an optimal summary of a set of diverging string sequences. From a collection of these sequences of names, with each sequence noisily corresponding to a branch of the unknown tree TT representing the letter's true dissemination, can we efficiently and accurately reconstruct a tree TTT' \approx T? In this paper, we give efficient exact algorithms for this summarization problem when the number of sequences is small; for larger sets of sequences, we prove hardness and provide an efficient heuristic algorithm. We evaluate this heuristic on synthetic data sets chosen to emulate real chain letters, showing that our algorithm is competitive with or better than previous approaches, and that it also comes close to finding the true trees in these synthetic datasets.Comment: 18 pages, 6 figures. Accepted to Combinatorial Pattern Matching (CPM) 202

    A new iterative algorithm for computing a quality approximate median of strings based on edit operations

    Get PDF
    This paper presents a new algorithm that can be used to compute an approximation to the median of a set of strings. The approximate median is obtained through the successive improvements of a partial solution. The edit distance from the partial solution to all the strings in the set is computed in each iteration, thus accounting for the frequency of each of the edit operations in all the positions of the approximate median. A goodness index for edit operations is later computed by multiplying their frequency by the cost. Each operation is tested, starting from that with the highest index, in order to verify whether applying it to the partial solution leads to an improvement. If successful, a new iteration begins from the new approximate median. The algorithm finishes when all the operations have been examined without a better solution being found. Comparative experiments involving Freeman chain codes encoding 2D shapes and the Copenhagen chromosome database show that the quality of the approximate median string is similar to benchmark approaches but achieves a much faster convergence.This work is partially supported by the Spanish CICYT under project DPI2006-15542-C04-01, the Spanish MICINN through project TIN2009-14205-CO4-01 and by the Spanish research program Consolider Ingenio 2010: MIPRCV (CSD2007-00018)

    Markets, Elections, and Microbes: Data-driven Algorithms from Theory to Practice

    Get PDF
    Many modern problems in algorithms and optimization are driven by data which often carries with it an element of uncertainty. In this work, we conduct an investigation into algorithmic foundations and applications across three main areas. The first area is online matching algorithms for e-commerce applications such as online sales and advertising. The importance of e-commerce in modern business cannot be overstated and even minor algorithmic improvements can have huge impacts. In online matching problems, we generally have a known offline set of goods or advertisements while users arrive online and allocations must be made immediately and irrevocably when a user arrives. However, in the real world, there is also uncertainty about a user's true interests and this can be modeled by considering matching problems in a graph with stochastic edges that only have a probability of existing. These edges can represent the probability of a user purchasing a product or clicking on an ad. Thus, we optimize over data which only provides an estimate of what types of users will arrive and what they will prefer. We survey a broad landscape of problems in this area, gain a deeper understanding of the algorithmic challenges, and present algorithms with improved worst case performance The second area is constrained clustering where we explore classical clustering problems with additional constraints on which data points should be clustered together. Utilizing these constraints is important for many clustering problems because they can be used to ensure fairness, exploit expert advice, or capture natural properties of the data. In simplest case, this can mean some pairs of points have ``must-link'' constraints requiring that that they must be clustered together. Moving into stochastic settings, we can describe more general pairwise constraints such as bounding the probability that two points are separated into different clusters. This lets us introduce a new notion of fairness for clustering and address stochastic problems such as semi-supervised learning with advice from imperfect experts. Here, we introduce new models of constrained clustering including new notions of fairness for clustering applications. Since these problems are NP-hard, we give approximation algorithms and in some cases conduct experiments to explore how the algorithms perform in practice. Finally, we look closely at the particular clustering problem of drawing election districts and show how constraining the clusters based on past voting data can interact with voter incentives. The third area is string algorithms for bioinformatics and metagenomics specifically where the data deluge from next generation sequencing drives the necessity for new algorithms that are both fast and accurate. For metagenomic analysis, we present a tool for clustering a microbial marker gene, the 16S ribosomal RNA gene. On the more theoretical side, we present a succinct application of the Method of the Four Russians to edit distance computation as well as new algorithms and bounds for the maximum duo-preservation string mapping (MPSM) problem

    Exact Mean Computation in Dynamic Time Warping Spaces

    Full text link
    Dynamic time warping constitutes a major tool for analyzing time series. In particular, computing a mean series of a given sample of series in dynamic time warping spaces (by minimizing the Fr\'echet function) is a challenging computational problem, so far solved by several heuristic and inexact strategies. We spot some inaccuracies in the literature on exact mean computation in dynamic time warping spaces. Our contributions comprise an exact dynamic program computing a mean (useful for benchmarking and evaluating known heuristics). Based on this dynamic program, we empirically study properties like uniqueness and length of a mean. Moreover, experimental evaluations reveal substantial deficits of state-of-the-art heuristics in terms of their output quality. We also give an exact polynomial-time algorithm for the special case of binary time series
    corecore