2,228 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Towards a centralized multicore automotive system

    Get PDF
    Today’s automotive systems are inundated with embedded electronics to host chassis, powertrain, infotainment, advanced driver assistance systems, and other modern vehicle functions. As many as 100 embedded microcontrollers execute hundreds of millions of lines of code in a single vehicle. To control the increasing complexity in vehicle electronics and services, automakers are planning to consolidate different on-board automotive functions as software tasks on centralized multicore hardware platforms. However, these vehicle software services have different and contrasting timing, safety, and security requirements. Existing vehicle operating systems are ill-equipped to provide all the required service guarantees on a single machine. A centralized automotive system aims to tackle this by assigning software tasks to multiple criticality domains or levels according to their consequences of failures, or international safety standards like ISO 26262. This research investigates several emerging challenges in time-critical systems for a centralized multicore automotive platform and proposes a novel vehicle operating system framework to address them. This thesis first introduces an integrated vehicle management system (VMS), called DriveOS™, for a PC-class multicore hardware platform. Its separation kernel design enables temporal and spatial isolation among critical and non-critical vehicle services in different domains on the same machine. Time- and safety-critical vehicle functions are implemented in a sandboxed Real-time Operating System (OS) domain, and non-critical software is developed in a sandboxed general-purpose OS (e.g., Linux, Android) domain. To leverage the advantages of model-driven vehicle function development, DriveOS provides a multi-domain application framework in Simulink. This thesis also presents a real-time task pipeline scheduling algorithm in multiprocessors for communication between connected vehicle services with end-to-end guarantees. The benefits and performance of the overall automotive system framework are demonstrated with hardware-in-the-loop testing using real-world applications, car datasets and simulated benchmarks, and with an early-stage deployment in a production-grade luxury electric vehicle

    The Development of Microdosimetric Instrumentation for Quality Assurance in Heavy Ion Therapy, Boron Neutron Capture Therapy and Fast Neutron Therapy

    Get PDF
    This thesis presents research for the development of new microdosimetric instrumentation for use with solid-state microdosimeters in order to improve their portability for radioprotection purposes and for QA in various hadron therapy modalities. Monte Carlo simulation applications are developed and benchmarked, pertaining to the context of the relevant therapies considered. The simulation and experimental findings provide optimisation recommendations relating to microdosimeter performance and possible radioprotection risks by activated materials. The first part of this thesis is continuing research into the development of novel Silicon-on-Insulator (SOI) microdosimeters in the application of hadron therapy QA. This relates specifically to the optimisation of current microdosimeters, development of Monte Carlo applications for experimental validation, assessment of radioprotection risks during experiments and advanced Monte Carlo modelling of various accelerator beamlines. Geant4 and MCNP6 Monte Carlo codes are used extensively in this thesis, with rigorous benchmarking completed in the context of experimental verification, and evaluation of the similarities and differences when simulating relevant hadron therapy facilities. The second part of this thesis focuses on the development of a novel wireless microdosimetry system - the Radiodosimeter, to improve the operation efficiency and minimise any radioprotection risks. The successful implementation of the wireless Radiodosimeter is considered as an important milestone in the development of a microdosimetry system that can be operated by an end-user with no prior knowledge

    Structural Parameterizations for Two Bounded Degree Problems Revisited

    Get PDF

    Analog Photonics Computing for Information Processing, Inference and Optimisation

    Full text link
    This review presents an overview of the current state-of-the-art in photonics computing, which leverages photons, photons coupled with matter, and optics-related technologies for effective and efficient computational purposes. It covers the history and development of photonics computing and modern analogue computing platforms and architectures, focusing on optimization tasks and neural network implementations. The authors examine special-purpose optimizers, mathematical descriptions of photonics optimizers, and their various interconnections. Disparate applications are discussed, including direct encoding, logistics, finance, phase retrieval, machine learning, neural networks, probabilistic graphical models, and image processing, among many others. The main directions of technological advancement and associated challenges in photonics computing are explored, along with an assessment of its efficiency. Finally, the paper discusses prospects and the field of optical quantum computing, providing insights into the potential applications of this technology.Comment: Invited submission by Journal of Advanced Quantum Technologies; accepted version 5/06/202

    Adaptive vehicular networking with Deep Learning

    Get PDF
    Vehicular networks have been identified as a key enabler for future smart traffic applications aiming to improve on-road safety, increase road traffic efficiency, or provide advanced infotainment services to improve on-board comfort. However, the requirements of smart traffic applications also place demands on vehicular networks’ quality in terms of high data rates, low latency, and reliability, while simultaneously meeting the challenges of sustainability, green network development goals and energy efficiency. The advances in vehicular communication technologies combined with the peculiar characteristics of vehicular networks have brought challenges to traditional networking solutions designed around fixed parameters using complex mathematical optimisation. These challenges necessitate greater intelligence to be embedded in vehicular networks to realise adaptive network optimisation. As such, one promising solution is the use of Machine Learning (ML) algorithms to extract hidden patterns from collected data thus formulating adaptive network optimisation solutions with strong generalisation capabilities. In this thesis, an overview of the underlying technologies, applications, and characteristics of vehicular networks is presented, followed by the motivation of using ML and a general introduction of ML background. Additionally, a literature review of ML applications in vehicular networks is also presented drawing on the state-of-the-art of ML technology adoption. Three key challenging research topics have been identified centred around network optimisation and ML deployment aspects. The first research question and contribution focus on mobile Handover (HO) optimisation as vehicles pass between base stations; a Deep Reinforcement Learning (DRL) handover algorithm is proposed and evaluated against the currently deployed method. Simulation results suggest that the proposed algorithm can guarantee optimal HO decision in a realistic simulation setup. The second contribution explores distributed radio resource management optimisation. Two versions of a Federated Learning (FL) enhanced DRL algorithm are proposed and evaluated against other state-of-the-art ML solutions. Simulation results suggest that the proposed solution outperformed other benchmarks in overall resource utilisation efficiency, especially in generalisation scenarios. The third contribution looks at energy efficiency optimisation on the network side considering a backdrop of sustainability and green networking. A cell switching algorithm was developed based on a Graph Neural Network (GNN) model and the proposed energy efficiency scheme is able to achieve almost 95% of the metric normalised energy efficiency compared against the “ideal” optimal energy efficiency benchmark and is capable of being applied in many more general network configurations compared with the state-of-the-art ML benchmark

    Accelerated Encrypted Execution of General-Purpose Applications

    Get PDF
    Fully Homomorphic Encryption (FHE) is a cryptographic method that guarantees the privacy and security of user data during computation. FHE algorithms can perform unlimited arithmetic computations directly on encrypted data without decrypting it. Thus, even when processed by untrusted systems, confidential data is never exposed. In this work, we develop new techniques for accelerated encrypted execution and demonstrate the significant performance advantages of our approach. Our current focus is the Fully Homomorphic Encryption over the Torus (CGGI) scheme, which is a current state-of-the-art method for evaluating arbitrary functions in the encrypted domain. CGGI represents a computation as a graph of homomorphic logic gates and each individual bit of the plaintext is transformed into a polynomial in the encrypted domain. Arithmetic on such data becomes very expensive: operations on bits become operations on entire polynomials. Therefore, evaluating even relatively simple nonlinear functions, such as a sigmoid, can take thousands of seconds on a single CPU thread. Using our novel framework for end-to-end accelerated encrypted execution called ArctyrEX, developers with no knowledge of complex FHE libraries can simply describe their computation as a C program that is evaluated over 40x faster on an NVIDIA DGX A100 and 6x faster with a single A100 relative to a 256-threaded CPU baseline
    • …
    corecore