111 research outputs found

    Complexity of Nested Circumscription and Nested Abnormality Theories

    Full text link
    The need for a circumscriptive formalism that allows for simple yet elegant modular problem representation has led Lifschitz (AIJ, 1995) to introduce nested abnormality theories (NATs) as a tool for modular knowledge representation, tailored for applying circumscription to minimize exceptional circumstances. Abstracting from this particular objective, we propose L_{CIRC}, which is an extension of generic propositional circumscription by allowing propositional combinations and nesting of circumscriptive theories. As shown, NATs are naturally embedded into this language, and are in fact of equal expressive capability. We then analyze the complexity of L_{CIRC} and NATs, and in particular the effect of nesting. The latter is found to be a source of complexity, which climbs the Polynomial Hierarchy as the nesting depth increases and reaches PSPACE-completeness in the general case. We also identify meaningful syntactic fragments of NATs which have lower complexity. In particular, we show that the generalization of Horn circumscription in the NAT framework remains CONP-complete, and that Horn NATs without fixed letters can be efficiently transformed into an equivalent Horn CNF, which implies polynomial solvability of principal reasoning tasks. Finally, we also study extensions of NATs and briefly address the complexity in the first-order case. Our results give insight into the ``cost'' of using L_{CIRC} (resp. NATs) as a host language for expressing other formalisms such as action theories, narratives, or spatial theories.Comment: A preliminary abstract of this paper appeared in Proc. Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), pages 169--174. Morgan Kaufmann, 200

    Horn formula minimization

    Get PDF
    Horn formulas make up an important subclass of Boolean formulas that exhibits interesting and useful computational properties. They have been widely studied due to the fact that the satisfiability problem for Horn formulas is solvable in linear time. Also resulting from this, Horn formulas play an important role in the field of artificial intelligence. The minimization problem of Horn formulas is to reduce the size of a given Horn formula to find a shortest equivalent representation. Many knowledge bases in propositional expert systems are represented as Horn formulas. Therefore the minimization of Horn formulas can be used to reduce the size of these knowledge bases, thereby increasing the efficiency of queries. The goal of this project is to study the properties of Horn formulas and the minimization of Horn formulas. Topics discussed include The satisfiability problem for Horn formulas. NP-completeness of Horn formula minimization. Subclasses of Horn formulas for which the minimization problem is solvable in polynomial time. Approximation algorithms for Horn formula minimization

    Approximating minimum representations of key Horn functions

    Get PDF
    Horn functions form a subclass of Boolean functions and appear in many different areas of computer science and mathematics as a general tool to describe implications and dependencies. Finding minimum sized representations for such functions with respect to most commonly used measures is a computationally hard problem that remains hard even for the important subclass of key Horn functions. In this paper we provide logarithmic factor approximation algorithms for key Horn functions with respect to all measures studied in the literature for which the problem is known to be hard

    Generalising unit-refutation completeness and SLUR via nested input resolution

    Get PDF
    We introduce two hierarchies of clause-sets, SLUR_k and UC_k, based on the classes SLUR (Single Lookahead Unit Refutation), introduced in 1995, and UC (Unit refutation Complete), introduced in 1994. The class SLUR, introduced in [Annexstein et al, 1995], is the class of clause-sets for which unit-clause-propagation (denoted by r_1) detects unsatisfiability, or where otherwise iterative assignment, avoiding obviously false assignments by look-ahead, always yields a satisfying assignment. It is natural to consider how to form a hierarchy based on SLUR. Such investigations were started in [Cepek et al, 2012] and [Balyo et al, 2012]. We present what we consider the "limit hierarchy" SLUR_k, based on generalising r_1 by r_k, that is, using generalised unit-clause-propagation introduced in [Kullmann, 1999, 2004]. The class UC, studied in [Del Val, 1994], is the class of Unit refutation Complete clause-sets, that is, those clause-sets for which unsatisfiability is decidable by r_1 under any falsifying assignment. For unsatisfiable clause-sets F, the minimum k such that r_k determines unsatisfiability of F is exactly the "hardness" of F, as introduced in [Ku 99, 04]. For satisfiable F we use now an extension mentioned in [Ansotegui et al, 2008]: The hardness is the minimum k such that after application of any falsifying partial assignments, r_k determines unsatisfiability. The class UC_k is given by the clause-sets which have hardness <= k. We observe that UC_1 is exactly UC. UC_k has a proof-theoretic character, due to the relations between hardness and tree-resolution, while SLUR_k has an algorithmic character. The correspondence between r_k and k-times nested input resolution (or tree resolution using clause-space k+1) means that r_k has a dual nature: both algorithmic and proof theoretic. This corresponds to a basic result of this paper, namely SLUR_k = UC_k.Comment: 41 pages; second version improved formulations and added examples, and more details regarding future directions, third version further examples, improved and extended explanations, and more on SLUR, fourth version various additional remarks and editorial improvements, fifth version more explanations and references, typos corrected, improved wordin

    Unique key Horn functions

    Get PDF
    Given a relational database, a key is a set of attributes such that a value assignment to this set uniquely determines the values of all other attributes. The database uniquely defines a pure Horn function hh, representing the functional dependencies. If the knowledge of the attribute values in set AA determines the value for attribute vv, then AvA\rightarrow v is an implicate of hh. If KK is a key of the database, then KvK\rightarrow v is an implicate of hh for all attributes vv. Keys of small sizes play a crucial role in various problems. We present structural and complexity results on the set of minimal keys of pure Horn functions. We characterize Sperner hypergraphs for which there is a unique pure Horn function with the given hypergraph as the set of minimal keys. Furthermore, we show that recognizing such hypergraphs is co-NP-complete already when every hyperedge has size two. On the positive side, we identify several classes of graphs for which the recognition problem can be decided in polynomial time. We also present an algorithm that generates the minimal keys of a pure Horn function with polynomial delay. By establishing a connection between keys and target sets, our approach can be used to generate all minimal target sets with polynomial delay when the thresholds are bounded by a constant. As a byproduct, our proof shows that the Minimum Key problem is at least as hard as the Minimum Target Set Selection problem with bounded thresholds.Comment: 12 pages, 5 figure
    corecore