1,208 research outputs found

    Cascading Failures in Power Grids - Analysis and Algorithms

    Full text link
    This paper focuses on cascading line failures in the transmission system of the power grid. Recent large-scale power outages demonstrated the limitations of percolation- and epid- emic-based tools in modeling cascades. Hence, we study cascades by using computational tools and a linearized power flow model. We first obtain results regarding the Moore-Penrose pseudo-inverse of the power grid admittance matrix. Based on these results, we study the impact of a single line failure on the flows on other lines. We also illustrate via simulation the impact of the distance and resistance distance on the flow increase following a failure, and discuss the difference from the epidemic models. We then study the cascade properties, considering metrics such as the distance between failures and the fraction of demand (load) satisfied after the cascade (yield). We use the pseudo-inverse of admittance matrix to develop an efficient algorithm to identify the cascading failure evolution, which can be a building block for cascade mitigation. Finally, we show that finding the set of lines whose removal has the most significant impact (under various metrics) is NP-Hard and introduce a simple heuristic for the minimum yield problem. Overall, the results demonstrate that using the resistance distance and the pseudo-inverse of admittance matrix provides important insights and can support the development of efficient algorithms

    Exploring More-Coherent Quantum Annealing

    Full text link
    In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space have yet to be explored. In IARPA's Quantum Enhanced Optimization (QEO) program, we have opened some new lines of inquiry to get to the heart of QA, and are designing testbed superconducting circuits and conducting key experiments. In this paper, we discuss recent experimental progress related to one of the key design dimensions: qubit coherence. Using MIT Lincoln Laboratory's qubit fabrication process and extending recent progress in flux qubits, we are implementing and measuring QA-capable flux qubits. Achieving high coherence in a QA context presents significant new engineering challenges. We report on techniques and preliminary measurement results addressing two of the challenges: crosstalk calibration and qubit readout. This groundwork enables exploration of other promising features and provides a path to understanding the physics and the viability of quantum annealing as a computing resource.Comment: 7 pages, 3 figures. Accepted by the 2018 IEEE International Conference on Rebooting Computing (ICRC

    Problems related to the integration of fault tolerant aircraft electronic systems

    Get PDF
    Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included

    Virtual sensor networks: collaboration and resource sharing

    Get PDF
    This thesis contributes to the advancement of the Sensing as a Service (SeaaS), based on cloud infrastructures, through the development of models and algorithms that make an efficient use of both sensor and cloud resources while reducing the delay associated with the data flow between cloud and client sides, which results into a better quality of experience for users. The first models and algorithms developed are suitable for the case of mashups being managed at the client side, and then models and algorithms considering mashups managed at the cloud were developed. This requires solving multiple problems: i) clustering of compatible mashup elements; ii) allocation of devices to clusters, meaning that a device will serve multiple applications/mashups; iii) reduction of the amount of data flow between workplaces, and associated delay, which depends on clustering, device allocation and placement of workplaces. The developed strategies can be adopted by cloud service providers wishing to improve the performance of their clouds. Several steps towards an efficient Se-aaS business model were performed. A mathematical model was development to assess the impact (of resource allocations) on scalability, QoE and elasticity. Regarding the clustering of mashup elements, a first mathematical model was developed for the selection of the best pre-calculated clusters of mashup elements (virtual Things), and then a second model is proposed for the best virtual Things to be built (non pre-calculated clusters). Its evaluation is done through heuristic algorithms having such model as a basis. Such models and algorithms were first developed for the case of mashups managed at the client side, and after they were extended for the case of mashups being managed at the cloud. For the improvement of these last results, a mathematical programming optimization model was developed that allows optimal clustering and resource allocation solutions to be obtained. Although this is a computationally difficult approach, the added value of this process is that the problem is rigorously outlined, and such knowledge is used as a guide in the development of better a heuristic algorithm.Esta tese contribui para o avanço tecnológico do modelo de Sensing as a Service (Se-aaS), baseado em infraestrutura cloud, através do desenvolvimento de modelos e algoritmos que resolvem o problema da alocação eficiente de recursos, melhorando os métodos e técnicas atuais e reduzindo os tempos associados `a transferência dos dados entre a cloud e os clientes, com o objetivo de melhorar a qualidade da experiência dos seus utilizadores. Os primeiros modelos e algoritmos desenvolvidos são adequados para o caso em que as mashups são geridas pela aplicação cliente, e posteriormente foram desenvolvidos modelos e algoritmos para o caso em que as mashups são geridas pela cloud. Isto implica ter de resolver múltiplos problemas: i) Construção de clusters de elementos de mashup compatíveis; ii) Atribuição de dispositivos físicos aos clusters, acabando um dispositivo físico por servir m´ múltiplas aplicações/mashups; iii) Redução da quantidade de transferência de dados entre os diversos locais da cloud, e consequentes atrasos, o que dependente dos clusters construídos, dos dispositivos atribuídos aos clusters e dos locais da cloud escolhidos para realizar o processamento necessário. As diferentes estratégias podem ser adotadas por fornecedores de serviço cloud que queiram melhorar o desempenho dos seus serviços.(…

    Differential energy saving algorithms in a distributed router architecture

    Get PDF
    A distributed multistage software router (MSSR) is composed by several interconnected software routers running on personal computers (PCs). The MSSR architecture overcomes scalability and performance issues of single software router by providing parallel forwarding paths. Like many networking devices, a MSSR must be sized for peak traffic load, which implies energy inefficiency at low loads. Thus, we focus on energy saving schemes to improve the router energy efficiency by dynamically adapting the MSSR architecture to the currently offered load. We first introduce an optimal energy saving algorithm defined as a mixed integer linear programming (MILP) optimization model. Then, heuristic solutions, named differential algorithms are discussed. While the optimal approach provides higher energy savings, the heuristics avoid the complete MSSR reconfiguration, thus reducing forwarding delays and minimizing service interruption. The performance evaluation shows that the proposed heuristic algorithms, that gracefully modifies the internal MSSR configuration, preserve the load proportional energy demand characteristics of the optimal algorithm, with a minimal loss of efficiency, largely compensated by algorithm simplicity

    Adaptive Robust Traffic Engineering in Software Defined Networks

    Full text link
    One of the key advantages of Software-Defined Networks (SDN) is the opportunity to integrate traffic engineering modules able to optimize network configuration according to traffic. Ideally, network should be dynamically reconfigured as traffic evolves, so as to achieve remarkable gains in the efficient use of resources with respect to traditional static approaches. Unfortunately, reconfigurations cannot be too frequent due to a number of reasons related to route stability, forwarding rules instantiation, individual flows dynamics, traffic monitoring overhead, etc. In this paper, we focus on the fundamental problem of deciding whether, when and how to reconfigure the network during traffic evolution. We propose a new approach to cluster relevant points in the multi-dimensional traffic space taking into account similarities in optimal routing and not only in traffic values. Moreover, to provide more flexibility to the online decisions on when applying a reconfiguration, we allow some overlap between clusters that can guarantee a good-quality routing regardless of the transition instant. We compare our algorithm with state-of-the-art approaches in realistic network scenarios. Results show that our method significantly reduces the number of reconfigurations with a negligible deviation of the network performance with respect to the continuous update of the network configuration.Comment: 10 pages, 8 figures, submitted to IFIP Networking 201
    corecore