4,380 research outputs found

    Fault isolation detection expert (FIDEX). Part 1: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    Get PDF
    LeRC has recently completed the design of a Ka-band satellite transponder system, as part of the Advanced Communication Technology Satellite (ACTS) System. To enhance the reliability of this satellite, NASA funded the University of Akron to explore the application of an expert system to provide the transponder with an autonomous diagnosis capability. The results of this research was the development of a prototype diagnosis expert system called FIDEX (fault-isolation and diagnosis expert). FIDEX is a frame-based expert system that was developed in the NEXPERT Object development environment by Neuron Data, Inc. It is a MicroSoft Windows version 3.0 application, and was designed to operate on an Intel i80386 based personal computer system

    Real-Time Fault Detection and Diagnosis System for Analog and Mixed-Signal Circuits of Acousto-Magnetic EAS Devices

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper discusses fault diagnosis of the electronic circuit board, part of acousto-magnetic electronic article surveillance detection devices. The aim is that the end-user can run the fault diagnosis in real time using a portable FPGA-based platform so as to gain insight into the failures that have occurred.Peer reviewe

    Wind turbine condition monitoring : technical and commercial challenges.

    Get PDF
    Deployment of larger scale wind turbine systems, particularly offshore, requires more organized operation and maintenance strategies to ensure systems are safe, profitable and cost-effective. Among existing maintenance strategies, reliability centred maintenance is regarded as best for offshore wind turbines, delivering corrective and proactive (i.e. preventive and predictive) maintenance techniques enabling wind turbines to achieve high availability and low cost of energy. Reliability centred maintenance analysis may demonstrate that an accurate and reliable condition monitoring system is one method to increase availability and decrease the cost of energy from wind. In recent years, efforts have been made to develop efficient and cost-effective condition monitoring techniques for wind turbines. A number of commercial wind turbine monitoring systems are available in the market, most based on existing techniques from other rotating machine industries. Other wind turbine condition monitoring reviews have been published but have not addressed the technical and commercial challenges, in particular, reliability and value for money. The purpose of this paper is to fill this gap and present the wind industry with a detailed analysis of the current practical challenges with existing wind turbine condition monitoring technology

    Fault Diagnosis of HVDC Systems Using Machine Learning Based Methods

    Get PDF
    With the development of high-power electronic technology, HVDC system is applied in the power system because of advantages in large-capacity and long-distance transmission, stability, and flexibility. Therefore, as the guarantee of reliable operating of HVDC system, fault diagnosis of the HVDC system is of great significance. In the current variety methods used in fault diagnosis, Machine Learning based methods have become a hotspot. To this end, the performance of several commonly used machine learning classifiers is compared in HVDC system. First of all, nine faults both in AC systems and DC systems of the HVDC system are set in the HVDC model in Simulink. Therefore, 10 operating states corresponding to the faults and normal operating are considered as the output classes of classifier. Seven parameters, such as DC voltage and DC current, are selected as fault feature parameters of each sample. By simulating the HVDC system in 10 operating states (including normal operating state) correspondingly, 20000 samples, each containing seven parameters, be obtained during the fault period. Then, the training sample set and the test sample set are established by 80% and 20% of the whole sample set. Subsequently, Decision Trees, the Support Vector Machine (SVM), K-Nearest Neighborhood Classifier (KNN), Ensemble classifiers, Discriminant Analysis, Backward Propagation Neural Network (BP-NN), long Short-Term Memory Neural Network (LSTM-NN), Extreme Learning Machine (ELM) was trained and tested. The accuracy of testing is used as the performance index of the model. In particular, for BP-NN, the impact of different transfer functions and learning rules combinations on the accuracy of the model was tested. For ELM, the impact of different activation functions on accuracy is tested. The results have shown that ELM and Bagged Trees have the best performance in HVDC fault diagnosis. The accuracy of these two methods are 92.23% and 96.5% respectively. However, in order to achieve better accuracy in ELM model, a large number of hidden layer nodes are set so that training time increases sharply

    Fault Diagnosis of HVDC Systems Using Machine Learning Based Methods

    Get PDF
    With the development of high-power electronic technology, HVDC system is applied in the power system because of advantages in large-capacity and long-distance transmission, stability, and flexibility. Therefore, as the guarantee of reliable operating of HVDC system, fault diagnosis of the HVDC system is of great significance. In the current variety methods used in fault diagnosis, Machine Learning based methods have become a hotspot. To this end, the performance of several commonly used machine learning classifiers is compared in HVDC system. First of all, nine faults both in AC systems and DC systems of the HVDC system are set in the HVDC model in Simulink. Therefore, 10 operating states corresponding to the faults and normal operating are considered as the output classes of classifier. Seven parameters, such as DC voltage and DC current, are selected as fault feature parameters of each sample. By simulating the HVDC system in 10 operating states (including normal operating state) correspondingly, 20000 samples, each containing seven parameters, be obtained during the fault period. Then, the training sample set and the test sample set are established by 80% and 20% of the whole sample set. Subsequently, Decision Trees, the Support Vector Machine (SVM), K-Nearest Neighborhood Classifier (KNN), Ensemble classifiers, Discriminant Analysis, Backward Propagation Neural Network (BP-NN), long Short-Term Memory Neural Network (LSTM-NN), Extreme Learning Machine (ELM) was trained and tested. The accuracy of testing is used as the performance index of the model. In particular, for BP-NN, the impact of different transfer functions and learning rules combinations on the accuracy of the model was tested. For ELM, the impact of different activation functions on accuracy is tested. The results have shown that ELM and Bagged Trees have the best performance in HVDC fault diagnosis. The accuracy of these two methods are 92.23% and 96.5% respectively. However, in order to achieve better accuracy in ELM model, a large number of hidden layer nodes are set so that training time increases sharply

    Failure mode identification and end of life scenarios of offshore wind turbines: a review

    Get PDF
    In 2007, the EU established challenging goals for all Member States with the aim of obtaining 20% of their energy consumption from renewables, and offshore wind is expected to be among the renewable energy sources contributing highly towards achieving this target. Currently wind turbines are designed for a 25-year service life with the possibility of operational extension. Extending their efficient operation and increasing the overall electricity production will significantly increase the return on investment (ROI) and decrease the levelized cost of electricity (LCOE), considering that Capital Expenditure (CAPEX) will be distributed over a larger production output. The aim of this paper is to perform a detailed failure mode identification throughout the service life of offshore wind turbines and review the three most relevant end of life (EOL) scenarios: life extension, repowering and decommissioning. Life extension is considered the most desirable EOL scenario due to its profitability. It is believed that combining good inspection, operations and maintenance (O&M) strategies with the most up to date structural health monitoring and condition monitoring systems for detecting previously identified failure modes, will make life extension feasible. Nevertheless, for the cases where it is not feasible, other options such as repowering or decommissioning must be explored

    TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    Get PDF
    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system

    Wind turbine condition monitoring strategy through multiway PCA and multivariate inference

    Get PDF
    This article states a condition monitoring strategy for wind turbines using a statistical data-driven modeling approach by means of supervisory control and data acquisition (SCADA) data. Initially, a baseline data-based model is obtained from the healthy wind turbine by means of multiway principal component analysis (MPCA). Then, when the wind turbine is monitorized, new data is acquired and projected into the baseline MPCA model space. The acquired SCADA data are treated as a random process given the random nature of the turbulent wind. The objective is to decide if the multivariate distribution that is obtained from the wind turbine to be analyzed (healthy or not) is related to the baseline one. To achieve this goal, a test for the equality of population means is performed. Finally, the results of the test can determine that the hypothesis is rejected (and the wind turbine is faulty) or that there is no evidence to suggest that the two means are different, so the wind turbine can be considered as healthy. The methodology is evaluated on a wind turbine fault detection benchmark that uses a 5 MW high-fidelity wind turbine model and a set of eight realistic fault scenarios. It is noteworthy that the results, for the presented methodology, show that for a wide range of significance, a in [1%, 13%], the percentage of correct decisions is kept at 100%; thus it is a promising tool for real-time wind turbine condition monitoring.Peer ReviewedPostprint (published version

    Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time System

    Get PDF
    This paper presents the design, development and SIMULINK implementation of the lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool. The simulated results compare well with the experimental data measured from the actual machine. Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive models in dSPACE real-time system. The main components of the HIL system are: the drive model simulation and input – output (I/O) modules for receiving the real controller outputs. The paper explains how the experimental data obtained from the data acquisition process using dSPACE real-time system can be used for the development of machine tool diagnosis and prognosis systems that facilitate the improvement of maintenance activities
    corecore