558,757 research outputs found

    Hard and Soft Preparation Sets in Boolean Games

    Get PDF
    A fundamental problem in game theory is the possibility of reaching equilibrium outcomes with undesirable properties, e.g., inefficiency. The economics literature abounds with models that attempt to modify games in order to avoid such undesirable properties, for example through the use of subsidies and taxation, or by allowing players to undergo a bargaining phase before their decision. In this paper, we consider the effect of such transformations in Boolean games with costs, where players control propositional variables that they can set to true or false, and are primarily motivated to seek the satisfaction of some goal formula, while secondarily motivated to minimise the costs of their actions. We adopt (pure) preparation sets (prep sets) as our basic solution concept. A preparation set is a set of outcomes that contains for every player at least one best response to every outcome in the set. Prep sets are well-suited to the analysis of Boolean games, because we can naturally represent prep sets as propositional formulas, which in turn allows us to refer to prep formulas. The preference structure of Boolean games with costs makes it possible to distinguish between hard and soft prep sets. The hard prep sets of a game are sets of valuations that would be prep sets in that game no matter what the cost function of the game was. The properties defined by hard prep sets typically relate to goal-seeking behaviour, and as such these properties cannot be eliminated from games by, for example, taxation or subsidies. In contrast, soft prep sets can be eliminated by an appropriate system of incentives. Besides considering what can happen in a game by unrestricted manipulation of players’ cost function, we also investigate several mechanisms that allow groups of players to form coalitions and eliminate undesirable outcomes from the game, even when taxes or subsidies are not a possibility

    Understanding heavy tails in a bounded world or, is a truncated heavy tail heavy or not?

    Full text link
    We address the important question of the extent to which random variables and vectors with truncated power tails retain the characteristic features of random variables and vectors with power tails. We define two truncation regimes, soft truncation regime and hard truncation regime, and show that, in the soft truncation regime, truncated power tails behave, in important respects, as if no truncation took place. On the other hand, in the hard truncation regime much of "heavy tailedness" is lost. We show how to estimate consistently the tail exponent when the tails are truncated, and suggest statistical tests to decide on whether the truncation is soft or hard. Finally, we apply our methods to two recent data sets arising from computer networks

    Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges

    Full text link
    For the orthogonal-unitary and symplectic-unitary transitions in random matrix theory, the general parameter dependent distribution between two sets of eigenvalues with two different parameter values can be expressed as a quaternion determinant. For the parameter dependent Gaussian and Laguerre ensembles the matrix elements of the determinant are expressed in terms of corresponding skew-orthogonal polynomials, and their limiting value for infinite matrix dimension are computed in the vicinity of the soft and hard edges respectively. A connection formula relating the distributions at the hard and soft edge is obtained, and a universal asymptotic behaviour of the two point correlation is identified.Comment: 37 pgs., 1fi

    Privacy sets for constrained space-filling

    Get PDF
    The paper provides typology for space filling into what we call "soft" and "hard" methods along with introducing the central notion of privacy sets for dealing with the latter. A heuristic algorithm based on this notion is presented and we compare its performance on some well-known examples

    Hard and soft preparation sets in Boolean games

    Get PDF
    A fundamental problem in game theory is the possibility of reaching equi- librium outcomes with undesirable properties, e.g., inefficiency. The economics literature abounds with models that attempt to modify games in order to avoid such undesirable properties, for example through the use of subsidies and taxation, or by allowing players to undergo a bargaining phase before their decision. In this paper, we consider the effect of such transformations in Boolean games with costs, where players control propositional variables that they can set to true or false, and are primarily motivated to seek the sat- isfaction of some goal formula, while secondarily motivated to minimise the costs of their actions. We adopt (pure) preparation sets (prep sets) as our basic solution concept. A preparation set is a set of outcomes that contains for every player at least one best re- sponse to every outcome in the set. Prep sets are well-suited to the analysis of Boolean games, because we can naturally represent prep sets as propositional formulas, which in turn allows us to refer to prep formulas . The preference structure of Boolean games with costs makes it possible to distinguish between hard and soft prep sets. The hard prep sets of a game are sets of valuations that would be prep sets in that game no matter what the cost function of the game was. The properties defined by hard prep sets typically relate to goal-seeking behaviour, and as such these properties cannot be eliminated from games by, for example, taxation or subsidies. In contrast, soft prep sets can be eliminated by an appropriate system of incentives. Besides considering what can happen in a game by unrestricted manipulation of players’ cost function, we also investigate several mechanisms that allow groups of players to form coalitions and eliminate undesirable outcomes from the game, even when taxes or subsidies are not a possibility

    A Detection of an Anti-correlated Hard X-ray Lag in AM Herculis

    Get PDF
    Context {Earlier cross-correlation studies for AM Her were performed in various energy range from optical to X-ray and suggested that it mostly shows a high level of correlation but on occasion it shows a low level of correlation or uncorrelation.} Aims {To investigate the degree of correlation between soft (2-4 keV) and hard (9-20 keV) X-rays, we perform the cross-correlation study of the X-ray data sets of AM Her obtained with {\it RXTE}.} Methods {We cross-correlate the background-subtracted soft and hard X-ray light curves using the XRONOS program crosscor and fit a model to the obtained cross-correlation functions.} Results {We detect a hard X-ray lag of 192±33192\pm33 s in a specific section of energy-dependent light curve, where the soft X-ray (2-4 keV) intensity decreases but the hard X-ray (9-20 keV) intensity increases. From a spectral analysis, we find that the X-ray emission temperature increases during the anti-correlated intensity variation. In two other observations, the cross-correlation functions show a low level of correlation, which is consistent with the earlier results performed in a different energy range.} Conclusions {We report a detection of an anti-correlated hard X-ray lag of ∌\sim190 s from the proto-type polar AM Her. The hard X-ray lag is detected for the first time in the given energy range, and it is the longest lag among those reported in magnetic cataclysmic variables. We discuss the implications of our findings regarding the origin of the hard X-ray lag and the anti-correlated intensity variation.}Comment: Accepted in A&A, 4 page

    NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901

    Get PDF
    AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS) Low Mass X-ray Binary (LMXB) showcasing intense ionised Fe K absorption. We present here the analysis of 11 XMM-Newton and 15 NuSTAR new data-sets (obtained between 2013-2016), therefore tripling the number of observations of AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR spectra, we greatly improve on the fitting of the X-ray continuum. During the soft state the emission can be described by a disk black body (kT∌1.1−1.2kT\sim1.1-1.2 keV and inner disc radius rDBB∌14r_{DBB}\sim14 km), plus hot (kT∌2.2−3.0kT\sim2.2-3.0 keV) black body radiation with a small emitting radius (rBB∌0.5−0.8r_{BB}\sim0.5-0.8 km) likely associated with the boundary layer or NS surface, plus a faint Comptonisation component. Imprinted on the spectra are clear absorption features created by both neutral and ionised matter. Additionally, positive residuals suggestive of an emission Fe Kα\alpha disc line and consistent with relativistic ionised reflection are present during the soft state, while such residuals are not significant during the hard state. The hard state spectra are characterised by a hard (Γ∌1.9−2.1\Gamma\sim1.9-2.1) power law, showing no evidence for a high energy cut off (kTe>60−140kT_e>60-140 keV) and implying a small optical depth (τ<1.6\tau<1.6). The new observations confirm the previously witnessed trend of exhibiting strong Fe K absorption in the soft state, that significantly weakens during the hard state. Optical (GROND) and radio (GMRT) observations suggest for AX J1745.6-2901 a standard broad band SED as typically observed in accreting neutron stars.Comment: Accepted for publication in MNRA

    Career Readiness Skills for Marketing Majors: An Examination of Soft Skills, Hard Skills and Course Applications

    Get PDF
    What are the skills marketing majors need upon graduation from college? In today’s world, many of the skills rely on technology within the field of marketing (technical/hard skills). Other skills (soft skills) can be taught across various curricula. Organizations, educators and professional job search sites are placing increasing emphasis on “workplace” or “career” readiness skills. In this paper, the authors discuss their analysis of 133 pieces of literature from practitioners and academics on the in-demand skills needed by marketing majors. The first section provides a categorization of marketing soft skills to give a broad picture of various soft skill sets that students need to be aware. Next, the paper analyzes different “hard skills”, or technical abilities individuals need to perform to be successful in different marketing careers. The authors then examine the primary soft skills needed to execute different hard skills. Finally, the paper discusses course strategies to implement soft and hard skills in class. Attention is given to developing an integrative and “robust” set of soft and hard skills, and strategies, that can be used in different types, and sizes, of marketing classes
    • 

    corecore