17,771 research outputs found

    Constrained Cost-Coupled Stochastic Games with Independent State Processes

    Full text link
    We consider a non-cooperative constrained stochastic games with N players with the following special structure. With each player there is an associated controlled Markov chain. The transition probabilities of the i-th Markov chain depend only on the state and actions of controller i. The information structure that we consider is such that each player knows the state of its own MDP and its own actions. It does not know the states of, and the actions taken by other players. Finally, each player wishes to minimize a time-average cost function, and has constraints over other time-avrage cost functions. Both the cost that is minimized as well as those defining the constraints depend on the state and actions of all players. We study in this paper the existence of a Nash equilirium. Examples in power control in wireless communications are given.Comment: 7 pages, submitted in september 2006 to Operations Research Letter

    From Infinite to Finite Programs: Explicit Error Bounds with Applications to Approximate Dynamic Programming

    Full text link
    We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs in which the performance of the approximation is quantified explicitly. To this end, we adopt the recent developments in two areas of randomized optimization and first order methods, leading to a priori as well as a posterior performance guarantees. We illustrate the generality and implications of our theoretical results in the special case of the long-run average cost and discounted cost optimal control problems for Markov decision processes on Borel spaces. The applicability of the theoretical results is demonstrated through a constrained linear quadratic optimal control problem and a fisheries management problem.Comment: 30 pages, 5 figure

    On control of discrete-time state-dependent jump linear systems with probabilistic constraints: A receding horizon approach

    Full text link
    In this article, we consider a receding horizon control of discrete-time state-dependent jump linear systems, particular kind of stochastic switching systems, subject to possibly unbounded random disturbances and probabilistic state constraints. Due to a nature of the dynamical system and the constraints, we consider a one-step receding horizon. Using inverse cumulative distribution function, we convert the probabilistic state constraints to deterministic constraints, and obtain a tractable deterministic receding horizon control problem. We consider the receding control law to have a linear state-feedback and an admissible offset term. We ensure mean square boundedness of the state variable via solving linear matrix inequalities off-line, and solve the receding horizon control problem on-line with control offset terms. We illustrate the overall approach applied on a macroeconomic system

    A distributionally robust perspective on uncertainty quantification and chance constrained programming

    Get PDF
    The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be modeled through a chance constrained program. In this paper we assume that the parameters of the system are governed by an ambiguous distribution that is only known to belong to an ambiguity set characterized through generalized moment bounds and structural properties such as symmetry, unimodality or independence patterns. We delineate the watershed between tractability and intractability in ambiguity-averse uncertainty quantification and chance constrained programming. Using tools from distributionally robust optimization, we derive explicit conic reformulations for tractable problem classes and suggest efficiently computable conservative approximations for intractable ones
    • …
    corecore