2,662 research outputs found

    Statistical Mechanics of Surjective Cellular Automata

    Get PDF
    Reversible cellular automata are seen as microscopic physical models, and their states of macroscopic equilibrium are described using invariant probability measures. We establish a connection between the invariance of Gibbs measures and the conservation of additive quantities in surjective cellular automata. Namely, we show that the simplex of shift-invariant Gibbs measures associated to a Hamiltonian is invariant under a surjective cellular automaton if and only if the cellular automaton conserves the Hamiltonian. A special case is the (well-known) invariance of the uniform Bernoulli measure under surjective cellular automata, which corresponds to the conservation of the trivial Hamiltonian. As an application, we obtain results indicating the lack of (non-trivial) Gibbs or Markov invariant measures for "sufficiently chaotic" cellular automata. We discuss the relevance of the randomization property of algebraic cellular automata to the problem of approach to macroscopic equilibrium, and pose several open questions. As an aside, a shift-invariant pre-image of a Gibbs measure under a pre-injective factor map between shifts of finite type turns out to be always a Gibbs measure. We provide a sufficient condition under which the image of a Gibbs measure under a pre-injective factor map is not a Gibbs measure. We point out a potential application of pre-injective factor maps as a tool in the study of phase transitions in statistical mechanical models.Comment: 50 pages, 7 figure

    Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections

    Get PDF
    In this note we analyze an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.Comment: Key words: Bootstrap percolation, anisotropy, finite-size effect

    Scaling and Inverse Scaling in Anisotropic Bootstrap percolation

    Full text link
    In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-order terms (that is, sharp and sharper thresholds) for the percolation threshold in general is a hard question. In the case of two-dimensional anisotropic models, sometimes correction terms can be obtained from inversion in a relatively simple manner.Comment: Contribution to the proceedings of the 2013 EURANDOM workshop Probabilistic Cellular Automata: Theory, Applications and Future Perspectives, equation typo corrected, constant of generalisation correcte

    Detection of an anomalous cluster in a network

    Full text link
    We consider the problem of detecting whether or not, in a given sensor network, there is a cluster of sensors which exhibit an "unusual behavior." Formally, suppose we are given a set of nodes and attach a random variable to each node. We observe a realization of this process and want to decide between the following two hypotheses: under the null, the variables are i.i.d. standard normal; under the alternative, there is a cluster of variables that are i.i.d. normal with positive mean and unit variance, while the rest are i.i.d. standard normal. We also address surveillance settings where each sensor in the network collects information over time. The resulting model is similar, now with a time series attached to each node. We again observe the process over time and want to decide between the null, where all the variables are i.i.d. standard normal, and the alternative, where there is an emerging cluster of i.i.d. normal variables with positive mean and unit variance. The growth models used to represent the emerging cluster are quite general and, in particular, include cellular automata used in modeling epidemics. In both settings, we consider classes of clusters that are quite general, for which we obtain a lower bound on their respective minimax detection rate and show that some form of scan statistic, by far the most popular method in practice, achieves that same rate to within a logarithmic factor. Our results are not limited to the normal location model, but generalize to any one-parameter exponential family when the anomalous clusters are large enough.Comment: Published in at http://dx.doi.org/10.1214/10-AOS839 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore