18 research outputs found

    FEATURE EXTRACTION FOR PERSON GAIT RECOGNITION APPLICATIONS

    Get PDF
    In this paper we present some features that may be used in person gait recognition applications. Gait recognition is an interesting way of people identification. During a gait cycle, each person creates unique patterns that can be used for people identification. Also, gait recognition methods ordinarily do not need interaction with a person and that is the main advantage of these methods. Features used in a person gait recognition methods can be obtained with widely available RGB and RGB-D cameras. In this paper we present a two features which are suitable for use in gait recognition applications. Mentioned features are height of a person and step length of a person. They may be extracted and were extracted from depth images obtained from RGB-D camera. For experimental purposes, we used a custom dataset created in outdoor environment using a long-range stereo camera

    GAIT Technology for Human Recognition using CNN

    Get PDF
    Gait is a distinctive biometric characteristic that can be detected from a distance; as a result, it has several uses in social security, forensic identification, and crime prevention. Existing gait identification techniques use a gait template, which makes it difficult to keep temporal information, or a gait sequence, which maintains pointless sequential limitations and loses the ability to portray a gait. Our technique, which is based on this deep set viewpoint, is immune to frame permutations and can seamlessly combine frames from many videos that were taken in various contexts, such as diversified watching, angles, various outfits, or various situations for transporting something. According to experiments, our single-model strategy obtains an average rank-1 accuracy of 96.1% on the CASIA-B gait dataset and an accuracy of 87.9% on the OU-MVLP gait dataset when used under typical walking conditions. Our model also demonstrates a great degree of robustness under numerous challenging circumstances. When carrying bags and wearing a coat while walking, it obtains accuracy on the CASIA-B of 90.8% and 70.3%, respectively, greatly surpassing the best approach currently in use. Additionally, the suggested method achieves a satisfactory level of accuracy even when there are few frames available in the test samples; for instance, it achieves 85.0% on the CASIA-B even with only 7 frames

    Topological signature for periodic motion recognition

    Get PDF
    In this paper, we present an algorithm that computes the topological signature for a given periodic motion sequence. Such signature consists of a vector obtained by persistent homology which captures the topological and geometric changes of the object that models the motion. Two topological signatures are compared simply by the angle between the corresponding vectors. With respect to gait recognition, we have tested our method using only the lowest fourth part of the body's silhouette. In this way, the impact of variations in the upper part of the body, which are very frequent in real scenarios, decreases considerably. We have also tested our method using other periodic motions such as running or jumping. Finally, we formally prove that our method is robust to small perturbations in the input data and does not depend on the number of periods contained in the periodic motion sequence.Comment: arXiv admin note: substantial text overlap with arXiv:1707.0698

    Human Gait Recognition Subject to Different Covariate Factors in a Multi-View Environment

    Get PDF
    Human gait recognition system identifies individuals based on their biometric traits. A human’s biometric features can be grouped into physiologic or behavioral traits. Biometric traits, such as the face [1], ears [2], iris [3], finger prints, passwords, and tokens, require highly accurate recognition and a well-controlled human interaction to be effective. In contrast, behavioral traits such as voice, signature, and gait do not require any human interaction and can be collected in a hidden and non-invasive mode with a camera system at a low resolution. In comparison with other physiological traits, one of the main advantages of gait analysis is the collection of data from a certain distance. However, gait is less powerful than physiological traits, yet it still has widespread application in surveillance for unfavorable situations. From traditional algorithms to deep learning models, a gait survey provides a detailed history of gait recognition

    Persistent-homology-based gait recognition

    Get PDF
    Gait recognition is an important biometric technique for video surveillance tasks, due to the advantage of using it at distance. In this paper, we present a persistent homology-based method to extract topological features (the so-called topological gait signature) from the the body silhouettes of a gait sequence. It has been used before in sev- eral conference papers of the same authors for human identi cation, gender classi cation, carried object detection and monitoring human activities at distance. The novelty of this paper is the study of the sta- bility of the topological gait signature under small perturbations and the number of gait cycles contained in a gait sequence. In other words, we show that the topological gait signature is robust to the presence of noise in the body silhouettes and to the number of gait cycles con- tained in a given gait sequence. We also show that computing our topological gait signature of only the lowest fourth part of the body silhouette, we avoid the upper body movements that are unrelated to the natural dynamic of the gait, caused for example by carrying a bag or wearing a coat.Ministerio de Economía y Competitividad MTM2015-67072-

    Robust arbitrary-view gait recognition based on 3D partial similarity matching

    Get PDF
    Existing view-invariant gait recognition methods encounter difficulties due to limited number of available gait views and varying conditions during training. This paper proposes gait partial similarity matching that assumes a 3-dimensional (3D) object shares common view surfaces in significantly different views. Detecting such surfaces aids the extraction of gait features from multiple views. 3D parametric body models are morphed by pose and shape deformation from a template model using 2-dimensional (2D) gait silhouette as observation. The gait pose is estimated by a level set energy cost function from silhouettes including incomplete ones. Body shape deformation is achieved via Laplacian deformation energy function associated with inpainting gait silhouettes. Partial gait silhouettes in different views are extracted by gait partial region of interest elements selection and re-projected onto 2D space to construct partial gait energy images. A synthetic database with destination views and multi-linear subspace classifier fused with majority voting are used to achieve arbitrary view gait recognition that is robust to varying conditions. Experimental results on CMU, CASIA B, TUM-IITKGP, AVAMVG and KY4D datasets show the efficacy of the propose method

    Covariate-invariant gait analysis for human identification(人識別を目的とする共変量不変歩行解析)

    Get PDF
    信州大学(Shinshu university)博士(工学)ThesisYEOH TZE WEI. Covariate-invariant gait analysis for human identification(人識別を目的とする共変量不変歩行解析). 信州大学, 2018, 博士論文. 博士(工学), 甲第692号, 平成30年03月20日授与.doctoral thesi

    Model-based 3d gait biometric using quadruple fusion classifier

    Get PDF
    The area of gait biometrics has received significant interest in the last few years, largely due to the unique suitability and reliability of gait pattern as a human recognition technique. The advantage of gait over other biometrics is that it can perform non-intrusive data acquisition and can be captured from a distance. Current gait analysis approach can be divided into model-free and model-based approach. The gait data extracted for identification process may be influenced by ambient noise conditions, occlusion, changes in backgrounds and illumination when model-free 2D silhouette data is considered. In addition, the performance in gait biometric recognition is often affected by covariate factors such as walking condition and footwear. These are often related to low performance of personal verification and identification. While body biometrics constituted of both static and dynamics features of gait motion, they can complement one another when used jointly to maximise recognition performance. Therefore, this research proposes a model-based technique that can overcome the above limitations. The proposed technique covers the process of extracting a set of 3D static and dynamic gait features from the 3D skeleton data in different covariate factors such as different footwear and walking condition. A skeleton model from forty subjects was acquired using Kinect which was able to provide human skeleton and 3D joints and the features were extracted and categorized into static and dynamic data. Normalization process was performed to scale down the features into a specific range of structure, followed by feature selection process to select the most significant features to be used in classification. The features were classified separately using five classification algorithms for static and dynamic features. A new fusion framework is proposed based on score level fusion called Quadruple Fusion Framework (QFF) in order to combine the static and dynamic features obtained from the classification model. The experimental result of static and dynamic fusion achieved the accuracy of 99.5% for footwear covariates and 97% for walking condition covariates. The result of the experimental validation demonstrated the viability of gait as biometrics in human recognition
    corecore