680 research outputs found

    Learning to Navigate Cloth using Haptics

    Full text link
    We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.Comment: Supplementary video available at https://youtu.be/iHqwZPKVd4A. Related publications http://www.cc.gatech.edu/~karenliu/Robotic_dressing.htm

    Artificial intelligence surgery: how do we get to autonomous actions in surgery?

    Get PDF
    Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intelligence (AI) has grown exponentially with the development of machine learning (ML), deep learning (DL), computer vision (CV) and natural language processing (NLP). All of these facets of AI will be fundamental to the development of more autonomous actions in surgery, unfortunately, only a limited number of surgeons have or seek expertise in this rapidly evolving field. As opposed to AI in medicine, AI surgery (AIS) involves autonomous movements. Fortuitously, as the field of robotics in surgery has improved, more surgeons are becoming interested in technology and the potential of autonomous actions in procedures such as interventional radiology, endoscopy and surgery. The lack of haptics, or the sensation of touch, has hindered the wider adoption of robotics by many surgeons; however, now that the true potential of robotics can be comprehended, the embracing of AI by the surgical community is more important than ever before. Although current complete surgical systems are mainly only examples of tele-manipulation, for surgeons to get to more autonomously functioning robots, haptics is perhaps not the most important aspect. If the goal is for robots to ultimately become more and more independent, perhaps research should not focus on the concept of haptics as it is perceived by humans, and the focus should be on haptics as it is perceived by robots/computers. This article will discuss aspects of ML, DL, CV and NLP as they pertain to the modern practice of surgery, with a focus on current AI issues and advances that will enable us to get to more autonomous actions in surgery. Ultimately, there may be a paradigm shift that needs to occur in the surgical community as more surgeons with expertise in AI may be needed to fully unlock the potential of AIS in a safe, efficacious and timely manner

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Skill-based human-robot cooperation in tele-operated path tracking

    Get PDF
    This work proposes a shared-control tele-operation framework that adapts its cooperative properties to the estimated skill level of the operator. It is hypothesized that different aspects of an operatorâ\u80\u99s performance in executing a tele-operated path tracking task can be assessed through conventional machine learning methods using motion-based and task-related features. To identify performance measures that capture motor skills linked to the studied task, an experiment is conducted where users new to tele-operation, practice towards motor skill proficiency in 7 training sessions. A set of classifiers are then learned from the acquired data and selected features, which can generate a skill profile that comprises estimations of userâ\u80\u99s various competences. Skill profiles are exploited to modify the behavior of the assistive robotic system accordingly with the objective of enhancing user experience by preventing unnecessary restriction for skilled users. A second experiment is implemented in which novice and expert users execute the path tracking on different pathways while being assisted by the robot according to their estimated skill profiles. Results validate the skill estimation method and hint at feasibility of shared-control customization in tele-operated path tracking

    TIMS: A Tactile Internet-Based Micromanipulation System with Haptic Guidance for Surgical Training

    Full text link
    Microsurgery involves the dexterous manipulation of delicate tissue or fragile structures such as small blood vessels, nerves, etc., under a microscope. To address the limitation of imprecise manipulation of human hands, robotic systems have been developed to assist surgeons in performing complex microsurgical tasks with greater precision and safety. However, the steep learning curve for robot-assisted microsurgery (RAMS) and the shortage of well-trained surgeons pose significant challenges to the widespread adoption of RAMS. Therefore, the development of a versatile training system for RAMS is necessary, which can bring tangible benefits to both surgeons and patients. In this paper, we present a Tactile Internet-Based Micromanipulation System (TIMS) based on a ROS-Django web-based architecture for microsurgical training. This system can provide tactile feedback to operators via a wearable tactile display (WTD), while real-time data is transmitted through the internet via a ROS-Django framework. In addition, TIMS integrates haptic guidance to `guide' the trainees to follow a desired trajectory provided by expert surgeons. Learning from demonstration based on Gaussian Process Regression (GPR) was used to generate the desired trajectory. User studies were also conducted to verify the effectiveness of our proposed TIMS, comparing users' performance with and without tactile feedback and/or haptic guidance.Comment: 8 pages, 7 figures. For more details of this project, please view our website: https://sites.google.com/view/viewtims/hom

    Virtual reality training for micro-robotic cell injection

    Full text link
    This research was carried out to fill the gap within existing knowledge on the approaches to supplement the training for micro-robotic cell injection procedure by utilising virtual reality and haptic technologies

    A Haptic Study to Inclusively Aid Teaching and Learning in the Discipline of Design

    Get PDF
    Designers are known to use a blend of manual and virtual processes to produce design prototype solutions. For modern designers, computer-aided design (CAD) tools are an essential requirement to begin to develop design concept solutions. CAD, together with augmented reality (AR) systems have altered the face of design practice, as witnessed by the way a designer can now change a 3D concept shape, form, color, pattern, and texture of a product by the click of a button in minutes, rather than the classic approach to labor on a physical model in the studio for hours. However, often CAD can limit a designer’s experience of being ‘hands-on’ with materials and processes. The rise of machine haptic1 (MH) tools have afforded a great potential for designers to feel more ‘hands-on’ with the virtual modeling processes. Through the use of MH, product designers are able to control, virtually sculpt, and manipulate virtual 3D objects on-screen. Design practitioners are well placed to make use of haptics, to augment 3D concept creation which is traditionally a highly tactile process. For similar reasoning, it could also be said that, non-sighted and visually impaired (NS, VI) communities could also benefit from using MH tools to increase touch-based interactions, thereby creating better access for NS, VI designers. In spite of this the use of MH within the design industry (specifically product design), or for use by the non-sighted community is still in its infancy. Therefore the full benefit of haptics to aid non-sighted designers has not yet been fully realised. This thesis empirically investigates the use of multimodal MH as a step closer to improving the virtual hands-on process, for the benefit of NS, VI and fully sighted (FS) Designer-Makers. This thesis comprises four experiments, embedded within four case studies (CS1-4). Case study 1and2 worked with self-employed NS, VI Art Makers at Henshaws College for the Blind and Visual Impaired. The study examined the effects of haptics on NS, VI users, evaluations of experience. Case study 3 and4, featuring experiments 3 and4, have been designed to examine the effects of haptics on distance learning design students at the Open University. The empirical results from all four case studies showed that NS, VI users were able to navigate and perceive virtual objects via the force from the haptically rendered objects on-screen. Moreover, they were assisted by the whole multimodal MH assistance, which in CS2 appeared to offer better assistance to NS versus FS participants. In CS3 and 4 MH and multimodal assistance afforded equal assistance to NS, VI, and FS, but haptics were not as successful in bettering the time results recorded in manual (M) haptic conditions. However, the collision data between M and MH showed little statistical difference. The thesis showed that multimodal MH systems, specifically used in kinesthetic mode have enabled human (non-disabled and disabled) to credibly judge objects within the virtual realm. It also shows that multimodal augmented tooling can improve the interaction and afford better access to the graphical user interface for a wider body of users
    • …
    corecore