292 research outputs found

    A Future for Entertainment-Defense Research Collaboration

    Get PDF
    In 1997, the National Research Council (NRC) issued a report that specified a joint research agenda for defense and entertainment modeling and simulation. This report showed the excellent opportunities for synergy between the entertainment and defense industries. For years, they have been solving similar problems for very different application areas. While those two communities' opposing cultures have been difficult to reconcile, recent efforts have proven promising. The looming question is whether the military sector can follow the leaping technological pace in the entertainment sector. That pace indicates tremendous growth in the entertainment industry, which will be coupled with continued technological innovation. The article shows how those advances will be equally vital for future defense applications, thereby demonstrating the importance of continued and increased defense-entertainment collaboration.Army Research OfficeAssistant Secretary of the Army for Manpower and Reserve AffairsNational Reconnaissance Office, Advanced Network and ServicesNavy Modeling and Simulation Management Offic

    Touching artefacts in an ancient world on a browser-based platform

    Get PDF
    Title: Touching artefacts in an ancient world on a browser-based platform Article & version: Published version Original citation & hyperlink: Arnab, S., Petridis, P., Dunwell, I. and de Freitas, S. (2010). Touching artefacts in an ancient world on a browser-based platform. In Y. Xiao, T. Amon & R. Muffolett

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    An investigation into virtual objects learning by using haptic interface for visually impaired children

    Get PDF
    Children play, touch, see and listen in order to build the foundation for later learning stage of solving problems and understanding themselves within the world surrounding them. However, visually impaired children have limited opportunities in learning new things compared to normal sighted children who have one of the important senses of a human being. Children gain knowledge through learning, playing, touching, seeing, listening and interacting with things that they are interested in. For visually impaired children, learning is different from normal sighted children in that they cannot go out and play with things without guidance and they are not able to see the picture or video of the things or objects like normal children are. A computer simulated virtual reality environment can provide better opportunities for visually impaired children especially in learning the shapes of new objects. An application utilizing the force feedback technology, i.e. Haptic technology, together with the aid of audio has been developed in this research project. Seven different objects are modelled to create haptic shapes for this application which allows visually impaired users to have a better learning environment and assists them in learning the shapes of different objects and also memorizing the shapes of different objects together with the name. The created application is deployed in a fully equipped computer with a stylus based haptic device and a set of speakers. The new architecture can provide an alternative learning environment for visually impaired children especially in learning the shapes of new objects. Based on the findings of this research, as 79% of the users agreed that virtual reality learning is useful in learning the shapes of new objects, the new architecture creates a significant contribution in a novel research area and assists visually impaired children in continuing their learning process

    A Haptic Modeling System

    Get PDF
    Haptics has been studied as a means of providing users with natural and immersive haptic sensations in various real, augmented, and virtual environments, but it is still relatively unfamiliar to the general public. One reason is the lack of abundant haptic content in areas familiar to the general public. Even though some modeling tools do exist for creating haptic content, the addition of haptic data to graphic models is still relatively primitive, time consuming, and unintuitive. In order to establish a comprehensive and efficient haptic modeling system, this chapter first defines the haptic modeling processes and its scopes. It then proposes a haptic modeling system that can, based on depth images and image data structure, create and edit haptic content easily and intuitively for virtual object. This system can also efficiently handle non-uniform haptic property per pixel, and can effectively represent diverse haptic properties (stiffness, friction, etc)

    Microscope Embedded Neurosurgical Training and Intraoperative System

    Get PDF
    In the recent years, neurosurgery has been strongly influenced by new technologies. Computer Aided Surgery (CAS) offers several benefits for patients\u27 safety but fine techniques targeted to obtain minimally invasive and traumatic treatments are required, since intra-operative false movements can be devastating, resulting in patients deaths. The precision of the surgical gesture is related both to accuracy of the available technological instruments and surgeon\u27s experience. In this frame, medical training is particularly important. From a technological point of view, the use of Virtual Reality (VR) for surgeon training and Augmented Reality (AR) for intra-operative treatments offer the best results. In addition, traditional techniques for training in surgery include the use of animals, phantoms and cadavers. The main limitation of these approaches is that live tissue has different properties from dead tissue and that animal anatomy is significantly different from the human. From the medical point of view, Low-Grade Gliomas (LGGs) are intrinsic brain tumours that typically occur in younger adults. The objective of related treatment is to remove as much of the tumour as possible while minimizing damage to the healthy brain. Pathological tissue may closely resemble normal brain parenchyma when looked at through the neurosurgical microscope. The tactile appreciation of the different consistency of the tumour compared to normal brain requires considerable experience on the part of the neurosurgeon and it is a vital point. The first part of this PhD thesis presents a system for realistic simulation (visual and haptic) of the spatula palpation of the LGG. This is the first prototype of a training system using VR, haptics and a real microscope for neurosurgery. This architecture can be also adapted for intra-operative purposes. In this instance, a surgeon needs the basic setup for the Image Guided Therapy (IGT) interventions: microscope, monitors and navigated surgical instruments. The same virtual environment can be AR rendered onto the microscope optics. The objective is to enhance the surgeon\u27s ability for a better intra-operative orientation by giving him a three-dimensional view and other information necessary for a safe navigation inside the patient. The last considerations have served as motivation for the second part of this work which has been devoted to improving a prototype of an AR stereoscopic microscope for neurosurgical interventions, developed in our institute in a previous work. A completely new software has been developed in order to reuse the microscope hardware, enhancing both rendering performances and usability. Since both AR and VR share the same platform, the system can be referred to as Mixed Reality System for neurosurgery. All the components are open source or at least based on a GPL license
    • …
    corecore