181 research outputs found

    Exploring haptic feedback for robot to human communication

    Get PDF
    Search and rescue operations are often undertaken in low-visibility smoky environments in which rescue teams must rely on haptic feedback for navigation, exploration and safe exit. The aim is to enable a human being to explore the environment using a robot. In this paper we evaluate haptic means for robot to human communication. We describe the testing procedure and the results of our first tests. Based on these results, we discuss improvements of our design

    Computer-supported movement guidance: investigating visual/visuotactile guidance and informing the design of vibrotactile body-worn interfaces

    Get PDF
    This dissertation explores the use of interactive systems to support movement guidance, with applications in various fields such as sports, dance, physiotherapy, and immersive sketching. The research focuses on visual, haptic, and visuohaptic approaches and aims to overcome the limitations of traditional guidance methods, such as dependence on an expert and high costs for the novice. The main contributions of the thesis are (1) an evaluation of the suitability of various types of displays and visualizations of the human body for posture guidance, (2) an investigation into the influence of different viewpoints/perspectives, the addition of haptic feedback, and various movement properties on movement guidance in virtual environments, (3) an investigation into the effectiveness of visuotactile guidance for hand movements in a virtual environment, (4) two in-depth studies of haptic perception on the body to inform the design of wearable and handheld interfaces that leverage tactile output technologies, and (5) an investigation into new interaction techniques for tactile guidance of arm movements. The results of this research advance the state of the art in the field, provide design and implementation insights, and pave the way for new investigations in computer-supported movement guidance

    Operator awareness in human–robot collaboration through wearable vibrotactile feedback

    Get PDF
    In industrial scenarios, requiring human–robot collaboration, the understanding between the human operator and his/her robot coworker is paramount. On the one side, the robot has to detect human intentions, and on the other side, the human needs to be aware of what is happening during the collaborative task. In this letter, we address the first issue by predicting human behavior through a new recursive Bayesian classifier, exploiting head, and hand tracking data. Human awareness is tackled by endowing the human with a vibrotactile ring that sends acknowledgments to the user during critical phases of the collaborative task. The proposed solution has been assessed in a human–robot collaboration scenario, and we found that adding haptic feedback is particularly helpful to improve the performance when the human–robot cooperation task is performed by nonskilled subjects. We believe that predicting operator's intention and equipping him/her with wearable interface, able to give information about the prediction reliability, are essential features to improve performance in a human–robot collaboration in industrial environments

    Sensory Augmentation for Balance Rehabilitation Using Skin Stretch Feedback

    Get PDF
    This dissertation focuses on the development and evaluation of portable sensory augmentation systems that render skin-stretch feedback of posture for standing balance training and for postural control improvement. Falling is one of the main causes of fatal injuries among all members of the population. The high incidence of fall-related injuries also leads to high medical expenses, which cost approximately $34 billion annually in the United States. People with neurological diseases, e.g., stroke, multiple sclerosis, spinal cord injuries, and the elderly are more prone to falling when compared to healthy individuals. Falls among these populations can also lead to hip fracture, or even death. Thus, several balance and gait rehabilitation approaches have been developed to reduce the risk of falling. Traditionally, a balance-retraining program includes a series of exercises for trainees to strengthen their sensorimotor and musculoskeletal systems. Recent advances in technology have incorporated biofeedback such as visual, auditory, or haptic feedback to provide the users with extra cues about their postural sway. Studies have also demonstrated the positive effects of biofeedback on balance control. However, current applications of biofeedback for interventions in people with impaired balance are still lacking some important characteristics such as portability (in-home care), small-size, and long-term viability. Inspired by the concept of light touch, a light, small, and wearable sensory augmentation system that detects body sway and supplements skin stretch on one’s fingertip pad was first developed. The addition of a shear tactile display could significantly enhance the sensation to body movement. Preliminary results have shown that the application of passive skin stretch feedback at the fingertip enhanced standing balance of healthy young adults. Based on these findings, two research directions were initiated to investigate i) which dynamical information of postural sway could be more effectively conveyed by skin stretch feedback, and ii) how can such feedback device be easily used in the clinical setting or on a daily basis. The major sections of this research are focused on understanding how the skin stretch feedback affects the standing balance and on quantifying the ability of humans to interpret the cutaneous feedback as the cues of their physiological states. Experimental results from both static and dynamic balancing tasks revealed that healthy subjects were able to respond to the cues and subsequently correct their posture. However, it was observed that the postural sway did not generally improve in healthy subjects due to skin stretch feedback. A possible reason was that healthy subjects already had good enough quality sensory information such that the additional artificial biofeedback may have interfered with other sensory cues. Experiments incorporating simulated sensory deficits were further conducted and it was found that subjects with perturbed sensory systems (e.g., unstable surface) showed improved balance due to skin stretch feedback when compared to the neutral standing conditions. Positive impacts on balance performance have also been demonstrated among multiple sclerosis patients when they receive skin stretch feedback from a sensory augmentation walker. The findings in this research indicated that the skin stretch feedback rendered by the developed devices affected the human balance and can potentially compensate underlying neurological or musculoskeletal disorders, therefore enhancing quiet standing postural control

    Wearable obstacle avoidance electronic travel aids for blind and visually impaired individuals : a systematic review

    Get PDF
    Background Wearable obstacle avoidance electronic travel aids (ETAs) have been developed to assist the safe displacement of blind and visually impaired individuals (BVIs) in indoor/outdoor spaces. This systematic review aimed to understand the strengths and weaknesses of existing ETAs in terms of hardware functionality, cost, and user experience. These elements may influence the usability of the ETAs and are valuable in guiding the development of superior ETAs in the future. Methods Formally published studies designing and developing the wearable obstacle avoidance ETAs were searched for from six databases from their inception to April 2023. The PRISMA 2020 and APISSER guidelines were followed. Results Eighty-nine studies were included for analysis, 41 of which were judged to be of moderate to high quality. Most wearable obstacle avoidance ETAs mainly depend on camera- and ultrasonic-based techniques to achieve perception of the environment. Acoustic feedback was the most common human-computer feedback form used by the ETAs. According to user experience, the efficacy and safety of the device was usually their primary concern. Conclusions Although many conceptualised ETAs have been designed to facilitate BVIs' independent navigation, most of these devices suffer from shortcomings. This is due to the nature and limitations of the various processors, environment detection techniques and human-computer feedback those ETAs are equipped with. Integrating multiple techniques and hardware into one ETA is a way to improve performance, but there is still a need to address the discomfort of wearing the device and the high-cost. Developing an applicable systematic review guideline along with a credible quality assessment tool for these types of studies is also required. © 2013 IEEE

    Multimodal Human-Machine Interface For Haptic-Controlled Excavators

    Get PDF
    The goal of this research is to develop a human-excavator interface for the hapticcontrolled excavator that makes use of the multiple human sensing modalities (visual, auditory haptic), and efficiently integrates these modalities to ensure intuitive, efficient interface that is easy to learn and use, and is responsive to operator commands. Two empirical studies were conducted to investigate conflict in the haptic-controlled excavator interface and identify the level of force feedback for best operator performance

    A Service Robot for Navigation Assistance and Physical Rehabilitation of Seniors

    Get PDF
    The population of the advanced countries is ageing, with the direct consequence that an increasing number of people will have to live with sensitive, cognitive and physical disabilities. People with impaired physical ability are not confident to move alone, especially in crowded environment and for long journeys, highly reducing the quality of their life. We propose a new generation of robotic walking assistants whose mechanical and electronic components are conceived to optimize the collaboration between the robot and its users. We will apply these general ideas to investigate the interaction between older adults and a robotic walker, named FriWalk, exploiting it either as a navigational or as a rehabilitation aid. For the use of the FriWalk as a navigation assistance, the system guides the user securing high levels of safety, a perfect compliance with the social rules and non-intrusive interaction between human and machine. To this purpose, we developed several guidance systems ranging from completely passive strategies to active solutions exploiting either the rear or the front motors mounted on the robot. The common strategy at the basis of all the algorithms is that the responsibility of the locomotion belongs always to the user, both to increase the mobility of elder users and to enhance their perception of control over the robot. This way the robot intervenes only whenever it is strictly necessary not to mitigate the user safety. Moreover, the robotic walker has been endowed with a tablet and graphical user interface (GUI) which provides the user with the visual indications about the path to follow. Since the FriWalk was developed to suit the needs of users with different deficits, we conducted extensive human-robot interaction (HRI) experiments with elders, complemented with direct interviews of the participants. As concerns the use of the FriWalk as a rehabilitation aid, force sensing to estimate the torques applied by the user and change the user perceived inertia can be exploited by doctors to let the user feel the device heavier or lighter. Moreover, thanks to a new generation of sensors, the device can be exploited in a clinical context to track the performance of the users' rehabilitation exercises, in order to assist nurses and doctors during the hospitalization of older adults
    • …
    corecore