333 research outputs found

    TeLeMan: Teleoperation for Legged Robot Loco-Manipulation using Wearable IMU-based Motion Capture

    Get PDF
    Human life is invaluable. When dangerous or life-threatening tasks need to be completed, robotic platforms could be ideal in replacing human operators. Such a task that we focus on in this work is the Explosive Ordnance Disposal. Robot telepresence has the potential to provide safety solutions, given that mobile robots have shown robust capabilities when operating in several environments. However, autonomy may be challenging and risky at this stage, compared to human operation. Teleoperation could be a compromise between full robot autonomy and human presence. In this paper, we present a relatively cheap solution for telepresence and robot teleoperation, to assist with Explosive Ordnance Disposal, using a legged manipulator (i.e., a legged quadruped robot, embedded with a manipulator and RGB-D sensing). We propose a novel system integration for the non-trivial problem of quadruped manipulator whole-body control. Our system is based on a wearable IMU-based motion capture system that is used for teleoperation and a VR headset for visual telepresence. We experimentally validate our method in real-world, for loco-manipulation tasks that require whole-body robot control and visual telepresence

    Development of a user experience enhanced teleoperation approach

    Get PDF
    In this paper, we have investigated various techniques that can be used to enhance user experience for robot teleoperation. In our teleoperation system design, the human operator are provided with both immersive visual feedback and intuitive skill transfer interface such that when controlling a telerobot arm, a user is able to feeļ in a first person perspective in terms of both visual and haptic sense. A number of high-tech devices including Omni haptic joystick, MYO armband, Oculus Rift DK2 headset, and Kinect v2 camera are integrated. The surface electromyography (sEMG) signal allows operator to naturally and efficiently transfer his/her motion skill to the robot, based on the properly designed elastic force feedback. For visual feedback, operators can control the pose of a camera on the head of the robot via the wearable visual headset, such that the operator is able to perceive from the roboţs perspective. Extensive tests have been performed with human subjects to evaluate the design, and the experimental results have shown that superior performance and better user experience have been achieved by the proposed method in comparison with the traditional methods

    Controlling a remotely located Robot using Hand Gestures in real time: A DSP implementation

    Full text link
    Telepresence is a necessity for present time as we can't reach everywhere and also it is useful in saving human life at dangerous places. A robot, which could be controlled from a distant location, can solve these problems. This could be via communication waves or networking methods. Also controlling should be in real time and smooth so that it can actuate on every minor signal in an effective way. This paper discusses a method to control a robot over the network from a distant location. The robot was controlled by hand gestures which were captured by the live camera. A DSP board TMS320DM642EVM was used to implement image pre-processing and fastening the whole system. PCA was used for gesture classification and robot actuation was done according to predefined procedures. Classification information was sent over the network in the experiment. This method is robust and could be used to control any kind of robot over distance

    Teleoperating a mobile manipulator and a free-flying camera from a single haptic device

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe paper presents a novel teleoperation system that allows the simultaneous and continuous command of a ground mobile manipulator and a free flying camera, implemented using an UAV, from which the operator can monitor the task execution in real-time. The proposed decoupled position and orientation workspace mapping allows the teleoperation from a single haptic device with bounded workspace of a complex robot with unbounded workspace. When the operator is reaching the position and orientation boundaries of the haptic workspace, linear and angular velocity components are respectively added to the inputs of the mobile manipulator and the flying camera. A user study on a virtual environment has been conducted to evaluate the performance and the workload on the user before and after proper training. Analysis on the data shows that the system complexity is not an obstacle for an efficient performance. This is a first step towards the implementation of a teleoperation system with a real mobile manipulator and a low-cost quadrotor as the free-flying camera.Accepted versio

    SoundScapes - Beyond Interaction... in search of the ultimate human-centred interface

    Get PDF

    Optical Camouflage - Review

    Full text link
    Fiber optic systems are important telecommunication infrastructure for world-wide broadband networks. Wide band width signal transmission with low delay is a key requirement in present day applications. Optical fibers provide enormous and unsurpassed transmission bandwidth with negligible latency, and are now the transmission medium of choice for long distance and high data rate transmission in telecommunication networks. This paper focused on the creation of invisibility with the help of technologies like Optical camouflage Image based rendering and Retro reflective projection. The object that needs to be made transparent or invisible is painted or covered with retro reflective material. There are some beneficial applications for this simple but astonishing technology. The different methods of optical camouflage provide invisibility in the visible site of spectrum. One of the most promising applications of this technology, however, has less to do with making objects invisible and more about making them visible. nbs
    corecore