166 research outputs found

    Haptic rendering of complex deformations through handle-space force linearization

    Full text link
    The force-update-rate requirements of transparent rendering of vir-tual environments are in conflict with the computational cost re-quired for computing complex interactions between deforming ob-jects. In this paper we introduce a novel method for satisfying high force update rates with deformable objects, yet retaining the visual quality of complex deformations and interactions. The objects that are haptically manipulated may have many de-grees of freedom, but haptic interaction is often implemented in practice through low-dimensional force-feedback devices. We ex-ploit the low-dimensional domain of the interaction for devising a novel linear approximation of interaction forces that can be ef-ficiently evaluated at force-update rates. Moreover, our linearized force model is time-implicit, which implies that it accounts for con-tact constraints and the internal dynamics of deforming objects. In this paper we show examples of haptic interaction in complex sit-uations such as large deformations, collision between deformable objects (with friction), or even self-collision

    Asynchronous haptic simulation of contacting deformable objects with variable stiffness

    Get PDF
    International audienceAbstract--This paper presents a new asynchronous approach for haptic rendering of deformable objects. When stiff nonlinear deformations take place, they introduce important and rapid variations of the force sent to the user. This problem is similar to the stiff virtual wall for which a high refresh rate is required to obtain a stable haptic feedback. However, when dealing with several interacting deformable objects, it is usually impossible to simulate all objects at high rates. To address this problem we propose a quasi-static framework that allows for stable interactions of asynchronously computed deformable objects. In the proposed approach, a deformable object can be computed at high refresh rates, while the remaining deformable virtual objects remain computed at low refresh rates. Moreover, contacts and other constraints between the different objects of the virtual environment are accurately solved using a shared Linear Complementarity Problem (LCP). Finally, we demonstrate our method on two test cases: a snap-in example involving non-linear deformations and a virtual thread interacting with a deformable object

    Haptic Rendering of Hyperelastic Models with Friction

    Get PDF
    International audience— This paper presents an original method for inter-actions' haptic rendering when treating hyperelastic materials. Such simulations are known to be difficult due to the non-linear behavior of hyperelastic bodies; furthermore, haptic constraints enjoin contact forces to be refreshed at least at 1000 updates per second. To enforce the stability of simulations of generic objects of any range of stiffness, this method relies on implicit time integration. Soft tissues dynamics is simulated in real time (20 to 100 Hz) using the Multiplicative Jacobian Energy Decomposition (MJED) method. An asynchronous preconditioner, updated at low rates (1 to 10 Hz), is used to obtain a close approximation of the mechanical coupling of interactions. Finally, the contact problem is linearized and, using a specific-loop, it is updated at typical haptic rates (around 1000 Hz) allowing this way new simulations of prompt stiff-contacts and providing a continuous haptic feedback as well

    Haptic Rendering of Interacting Dynamic Deformable Objects Simulated in Real-Time at Different Frequencies

    Get PDF
    International audienceThe dynamic response of deformable bodies varies significantly in dependence on mechanical properties of the objects: while the dynamics of a stiff and light object (e. g. wire or needle) involves high-frequency phenomena such as vibrations, much lower frequencies are sufficient for capturing dynamic response of an object composed of a soft tissue. Yet, when simulating mechanical interactions between soft and stiff deformable models, a single time-step is usually employed to compute the time integration of dynamics of both objects. However, this can be a serious issue when haptic rendering of complex scenes composed of various bodies is considered. In this paper, we present a novel method allowing for dynamic simulation of a scene composed of colliding objects modelled at different frequencies: typically, the dynamics of soft objects are calculated at frequency about 50 Hz, while the dynamics of stiff object is modeled at 1 kHz, being directly connected to the computation of haptic force feedback. The collision response is performed at both low and high frequencies employing data structures which describe the actual constraints and are shared between the high and low frequency loops. During the simulation, the realistic behaviour of the objects according to the mechanical principles (such as non-interpenetration and action-reaction principle) is guaranteed. Examples showing the scenes involving different bodies in interaction are given, demonstrating the benefits of the proposed method

    Haptic Interaction with Complex Models Based on Precomputations

    Get PDF

    Vascular neurosurgery simulation with bimanual haptic feedback

    Get PDF
    International audienceVirtual surgical simulators face many computational challenges: they need to provide biophysical accuracy, realistic feed-backs and high-rate responses. Better biophysical accuracy and more realistic feed-backs (be they visual, haptic.. .) induce more computational footprint. State-of-the-art approaches use high-performance hardware or find an acceptable trade-off between performance and accuracy to deliver interactive yet pedagogically relevant simulators. In this paper, we propose an interactive vascular neurosurgery simulator that provides bi-manual interaction with haptic feedback. The simulator is an original combination of states-of-the-art techniques that allows visual realism, bio-physical realism, complex interactions with the anatomical structures and the instruments and haptic feedback. Training exercises are also proposed to learn and to perform the different steps of intracranial aneurysm surgery (IAS). We assess the performance of our simulator with quantitative performance benchmarks and qualitative assessments of junior and senior clinicians

    Design and development of a VR system for exploration of medical data using haptic rendering and high quality visualization

    Get PDF
    [no abstract

    Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments

    Get PDF
    International audienceA new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and stiffness ratio are dissociated from the simulation time step. This last point is crucial to keep stable haptic feedback. This global approach has been packaged, implemented, and tested. Stable and realistic 6D haptic feedback is demonstrated through a clipping task experiment
    • …
    corecore