217 research outputs found

    Realistic Haptics Interaction in Complex Virtual Environments

    Get PDF

    A Study of Velocity-Dependent JND of Haptic Model Detail

    Get PDF
    The study of haptics, or the sense of touch in virtual reality environments, is constantly looking for improvements in modeling with a high fidelity. Highly detailed models are desirable, but they often lead to slow processing times, which can mean a loss of fidelity in the force feedback sensations. Model compression techniques are critical to balancing model detail and processing time. One of the proposed compression techniques is to create multiple models of the same object but with different levels of detail (LOD) for each model. The technique hypothesizes that the human arm loses sensitivity to forces with the increase of its movement speed. This the compression technique determines which model to use based on the user's movement speed. This dissertation examines studies how the movement speed of the user affects the user's ability to sense changes in details of haptic models. Experiments are conducted using different haptic surfaces. Their levels of detail are changed while the subject interacts with them to mimic the effects of a multiresolution compression implementation. The tests focus on the subjects' ability to differentiate changes of the surfaces at each speed. The first experiment uses curved surfaces with multiple resolutions. This test observes the sensitivity of the user when the details on the surface are small. The results show that the subjects are more sensitive to changes of small details at a lower speed than higher speed. The second experiment measures sensitivity to larger features by using trapezoidal surfaces with different angles. The trapezoidal surfaces can be seen as a low-resolution haptic model with only two vertices, and changing the angles of the trapezoids is seen as changing the radii of curvature. With the same speed settings from the first experiment applied to the subjects, the sensitivity for changes in curvature is predicted to decrease with the increase of speed. However, the results of this experiment proved otherwise. The conclusions suggest that multiresolution designs are not a straightforward reduction of LOD, even though the movement speed does affect haptic sensitivity. The model's geometry should be taken into account when designing the parameters for haptic model compression. The results from the experiments provide insights to future haptic multiresolution compression designs

    Instrument-tissue segment interaction using finite element modeling

    Get PDF
    Los Alamitos, C

    Dynamic Multivariate Simplex Splines For Volume Representation And Modeling

    Get PDF
    Volume representation and modeling of heterogeneous objects acquired from real world are very challenging research tasks and playing fundamental roles in many potential applications, e.g., volume reconstruction, volume simulation and volume registration. In order to accurately and efficiently represent and model the real-world objects, this dissertation proposes an integrated computational framework based on dynamic multivariate simplex splines (DMSS) that can greatly improve the accuracy and efficacy of modeling and simulation of heterogenous objects. The framework can not only reconstruct with high accuracy geometric, material, and other quantities associated with heterogeneous real-world models, but also simulate the complicated dynamics precisely by tightly coupling these physical properties into simulation. The integration of geometric modeling and material modeling is the key to the success of representation and modeling of real-world objects. The proposed framework has been successfully applied to multiple research areas, such as volume reconstruction and visualization, nonrigid volume registration, and physically based modeling and simulation

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery
    corecore