122 research outputs found

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Flexible robotic device for spinal surgery

    No full text
    Surgical robots have proliferated in recent years, with well-established benefits including: reduced patient trauma, shortened hospitalisation, and improved diagnostic accuracy and therapeutic outcome. Despite these benefits, many challenges in their development remain, including improved instrument control and ergonomics caused by rigid instrumentation and its associated fulcrum effect. Consequently, it is still extremely challenging to utilise such devices in cases that involve complex anatomical pathways such as the spinal column. The focus of this thesis is the development of a flexible robotic surgical cutting device capable of manoeuvring around the spinal column. The target application of the flexible surgical tool is the removal of cancerous tumours surrounding the spinal column, which cannot be excised completely using the straight surgical tools in use today; anterior and posterior sections of the spine must be accessible for complete tissue removal. A parallel robot platform with six degrees of freedom (6 DoFs) has been designed and fabricated to direct a flexible cutting tool to produce the necessary range of movements to reach anterior and posterior sections of the spinal column. A flexible water jet cutting system and a flexible mechanical drill, which may be assembled interchangeably with the flexible probe, have been developed and successfully tested experimentally. A model predicting the depth of cut by the water jet was developed and experimentally validated. A flexion probe that is able to guide the surgical cutting device around the spinal column has been fabricated and tested with human lumber model. Modelling and simulations show the capacity for the flexible surgical system to enable entering the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. A computer simulation with a full Graphical User Interface (GUI) was created and used to validate the system of inverse kinematic equations for the robot platform. The constraint controller and the inverse kinematics relations are both incorporated into the overall positional control structure of the robot, and have successfully established a haptic feedback controller for the 6 DoFs surgical probe, and effectively tested in vitro on spinal mock surgery. The flexible surgical system approached the surgery from the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. The flexible surgical robot removed 82% of mock cancerous tissue compared to 16% of tissue removed by the rigid tool.Open Acces

    Augmented reality (AR) for surgical robotic and autonomous systems: State of the art, challenges, and solutions

    Get PDF
    Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human-robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future

    Machine learning and interactive real-time simulation for training on relevant total hip replacement skills.

    Get PDF
    Virtual Reality simulators have proven to be an excellent tool in the medical sector to help trainees mastering surgical abilities by providing them with unlimited training opportunities. Total Hip Replacement (THR) is a procedure that can benefit significantly from VR/AR training, given its non-reversible nature. From all the different steps required while performing a THR, doctors agree that a correct fitting of the acetabular component of the implant has the highest relevance to ensure successful outcomes. Acetabular reaming is the step during which the acetabulum is resurfaced and prepared to receive the acetabular implant. The success of this step is directly related to the success of fitting the acetabular component. Therefore, this thesis will focus on developing digital tools that can be used to assist the training of acetabular reaming. Devices such as navigation systems and robotic arms have proven to improve the final accuracy of the procedure. However, surgeons must learn to adapt their instrument movements to be recognised by infrared cameras. When surgeons are initially introduced to these systems, surgical times can be extended up to 20 minutes, maximising surgical risks. Training opportunities are sparse, given the high investment required to purchase these devices. As a cheaper alternative, we developed an Augmented Reality (AR) alternative for training on the calibration of imageless navigation systems (INS). At the time, there were no alternative simulators that using head-mounted displays to train users into the steps to calibrate such systems. Our simulator replicates the presence of an infrared camera and its interaction with the reflecting markers located on the surgical tools. A group of 6 hip surgeons were invited to test the simulator. All of them expressed their satisfaction with the ease of use and attractiveness of the simulator as well as the similarity of interaction with the real procedure. The study confirmed that our simulator represents a cheaper and faster option to train multiple surgeons simultaneously in the use of Imageless Navigation Systems (INS) than learning exclusively on the surgical theatre. Current reviews on simulators for orthopaedic surgical procedures lack objective metrics of assessment given a standard set of design requirements. Instead, most of them rely exclusively on the level of interaction and functionality provided. We propose a comparative assessment rubric based on three different evaluation criteria. Namely immersion, interaction fidelity, and applied learning theories. After our assessment, we found that none of the simulators available for THR provides an accurate interactive representation of resurfacing procedures such as acetabular reaming based on force inputs exerted by the user. This feature is indispensable for an orthopaedics simulator, given that hand-eye coordination skills are essential skills to be trained before performing non-reversible bone removal on real patients. Based on the findings of our comparative assessment, we decided to develop a model to simulate the physically-based deformation expected during traditional acetabular reaming, given the user’s interaction with a volumetric mesh. Current interactive deformation methods on high-resolution meshes are based on geometrical collision detection and do not consider the contribution of the materials’ physical properties. By ignoring the effect of the material mechanics and the force exerted by the user, they become inadequate for training on hand- eye coordination skills transferable to the surgical theatre. Volumetric meshes are preferred in surgical simulation to geometric ones, given that they are able to represent the internal evolution of deformable solids resulting from cutting and shearing operations. Existing numerical methods for representing linear and corotational FEM cuts can only maintain interactive framerates at a low resolution of the mesh. Therefore, we decided to train a machine-learning model to learn the continuum mechanic laws relevant to acetabular reaming and predict deformations at interactive framerates. To the best of our knowledge, no research has been done previously on training a machine learning model on non-elastic FEM data to achieve results at interactive framerates. As training data, we used the results from XFEM simulations precomputed over 5000 frames for plastic deformations on tetrahedral meshes with 20406 elements each. We selected XFEM simulation as the physically-based deformation ground-truth given its accuracy and fast convergence to represent cuts, discontinuities and large strain rates. Our machine learning-based interactive model was trained following the Graph Neural Networks (GNN) blocks. GNNs were selected to learn on tetrahedral meshes as other supervised-learning architectures like the Multilayer perceptron (MLP), and Convolutional neural networks (CNN) are unable to learn the relationships between entities with an arbitrary number of neighbours. The learned simulator identifies the elements to be removed on each frame and describes the accumulated stress evolution in the whole machined piece. Using data generated from the results of XFEM allowed us to embed the effects of non-linearities in our interactive simulations without extra processing time. The trained model executed the prediction task using our tetrahedral mesh and unseen reamer orientations faster per frame than the time required to generate the training FEM dataset. Given an unseen orientation of the reamer, the trained GN model updates the value of accumulated stress on each of the 20406 tetrahedral elements that constitute our mesh during the prediction task. Once this value is updated, the tetrahedrons to be removed from the mesh are identified using a threshold condition. After using each single-frame output as input for the following prediction repeatedly for up to 60 iterations, our model can maintain an accuracy of up to 90.8% in identifying the status of each element given their value of accumulated stress. Finally, we demonstrate how the developed estimator can be easily connected to any game engine and included in developing a fully functional hip arthroplasty simulator

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Augmented Reality in Surgical Navigation: A Review of Evaluation and Validation Metrics

    Get PDF
    Pre-operative imaging has been used earlier to guide traditional surgical navigation systems. There has been a lot of effort in the last decade to integrate augmented reality into the operating room to help surgeons intra-operatively. An augmented reality (AR) based navigation system provides a clear three-dimensional picture of the interested areas over the patient to aid surgical navigation and operations, which is a promising approach. The goal of this study is to review the application of AR technology in various fields of surgery and how the technology is used for its performance in each field. Assessment of the available AR assisted navigation systems being used for surgery is reviewed in this paper. Furthermore, a discussion about the required evaluation and validation metric for these systems is also presented. The paper comprehensively reviews the literature since the year 2008 for providing relevant information on applying the AR technology for training, planning and surgical navigation. It also describes the limitations which need to be addressed before one can completely rely on this technology for surgery. Thus, additional research is desirable in this emerging field, particularly to evaluate and validate the use of AR technology for surgical navigation. 2023 by the authors.This publication was made possible by NPRP-11S-1219-170106 from the Qatar National Research Fund (a member of Qatar Foundation).Scopu

    Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions

    Get PDF
    Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human–robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems
    • …
    corecore