27 research outputs found

    Recent advances in biomedical photonic sensors: a focus on optical-fibre-based sensing

    Get PDF
    In this invited review, we provide an overview of the recent advances in biomedical pho tonic sensors within the last five years. This review is focused on works using optical-fibre technology, employing diverse optical fibres, sensing techniques, and configurations applied in several medical fields. We identified technical innovations and advancements with increased implementations of optical-fibre sensors, multiparameter sensors, and control systems in real applications. Examples of outstanding optical-fibre sensor performances for physical and biochemical parameters are covered, including diverse sensing strategies and fibre-optical probes for integration into medical instruments such as catheters, needles, or endoscopes.This work was supported by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (PID2019-107270RB-C21/AEI/10.13039/501100011033), and TeDFeS Project (RTC-2017- 6321-1) co-funded by European FEDER funds. M.O. and J.F.A. received funding from Ministerio de Ciencia, Innovación y Universidades of Spain under Juan de la Cierva-Formación and Juan de la Cierva-Incorporación grants, respectively. P.R-V. received funding from Ministerio de Educación, Cultura y Deporte of Spain under PhD grant FPU2018/02797

    The Effect of Robotic Technology on Perioperative Outcomes in Total Knee Arthroplasty

    Get PDF
    Introduction Robotic technology has recently regained momentum in total knee arthroplasty (TKA) but the effects of this technology on accuracy of implant positioning, intraoperative soft tissue injury and postoperative functional rehabilitation remain unknown. The objectives of this research thesis were to compare a comprehensive range of radiological objectives and perioperative outcomes in conventional jig-based TKA versus robotic-arm assisted TKA, and use optical motion capture technology to quantify the effects of anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) resection on knee biomechanics. Methods A series of prospective cohort studies were undertaken in patients with established knee osteoarthritis undergoing primary conventional jig-based TKA versus robotic-arm assisted TKA. Predefined radiological and perioperative study outcomes were recorded by independent observers. Optical motion capture technology during robotic TKA was used to quantify the effects of ACL and PCL resection on knee biomechanics. Results Robotic-arm assisted TKA was associated with improved accuracy of implant positioning, reduced periarticular soft tissue injury, decreased bone trauma, improved postoperative functional rehabilitation, and reduced early systemic inflammatory response compared to conventional jig-based TKA. The Macroscopic Soft Tissue Injury (MASTI) classification system was developed and validated for grading intraoperative periarticular soft tissue injury and bone trauma during TKA. ACL resection created flexion-extension mismatch by increasing the extension gap more than the flexion gap, whilst PCL resection increased the flexion gap proportionally more than the extension gap and created mediolateral laxity in knee flexion but not in extension. Conclusion Robotic-arm assisted TKA was associated with increased accuracy of implant positioning, reduced iatrogenic soft tissue injury, and improved functional rehabilitation compared to conventional jig-based TKA. ACL and PCL resections created unique changes in knee biomechanics that affected flexion-extension gaps and mediolateral soft tissue tension during TKA. On the basis of this thesis, further clinical trials have been established to determine the long-term clinical significance of these findings

    Enhancement of Robot-Assisted Rehabilitation Outcomes of Post-Stroke Patients Using Movement-Related Cortical Potential

    Get PDF
    Post-stroke rehabilitation is essential for stroke survivors to help them regain independence and to improve their quality of life. Among various rehabilitation strategies, robot-assisted rehabilitation is an efficient method that is utilized more and more in clinical practice for motor recovery of post-stroke patients. However, excessive assistance from robotic devices during rehabilitation sessions can make patients perform motor training passively with minimal outcome. Towards the development of an efficient rehabilitation strategy, it is necessary to ensure the active participation of subjects during training sessions. This thesis uses the Electroencephalography (EEG) signal to extract the Movement-Related Cortical Potential (MRCP) pattern to be used as an indicator of the active engagement of stroke patients during rehabilitation training sessions. The MRCP pattern is also utilized in designing an adaptive rehabilitation training strategy that maximizes patients’ engagement. This project focuses on the hand motor recovery of post-stroke patients using the AMADEO rehabilitation device (Tyromotion GmbH, Austria). AMADEO is specifically developed for patients with fingers and hand motor deficits. The variations in brain activity are analyzed by extracting the MRCP pattern from the acquired EEG data during training sessions. Whereas, physical improvement in hand motor abilities is determined by two methods. One is clinical tests namely Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) which include FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand movements’ tests. The other method is the measurement of hand-kinematic parameters using the AMADEO assessment tool which contains hand strength measurements during flexion (force-flexion), and extension (force-extension), and Hand Range of Movement (HROM)

    Biomechanical Modeling and Inverse Problem Based Elasticity Imaging for Prostate Cancer Diagnosis

    Get PDF
    Early detection of prostate cancer plays an important role in successful prostate cancer treatment. This requires screening the prostate periodically after the age of 50. If screening tests lead to prostate cancer suspicion, prostate needle biopsy is administered which is still considered as the clinical gold standard for prostate cancer diagnosis. Given that needle biopsy is invasive and is associated with issues including discomfort and infection, it is desirable to develop a prostate cancer diagnosis system that has high sensitivity and specificity for early detection with a potential to improve needle biopsy outcome. Given the complexity and variability of prostate cancer pathologies, many research groups have been pursuing multi-parametric imaging approach as no single modality imaging technique has proven to be adequate. While imaging additional tissue properties increases the chance of reliable prostate cancer detection and diagnosis, selecting an additional property needs to be done carefully by considering clinical acceptability and cost. Clinical acceptability entails ease with respect to both operating by the radiologist and patient comfort. In this work, effective tissue biomechanics based diagnostic techniques are proposed for prostate cancer assessment with the aim of early detection and minimizing the numbers of prostate biopsies. The techniques take advantage of the low cost, widely available and well established TRUS imaging method. The proposed techniques include novel elastography methods which were formulated based on an inverse finite element frame work. Conventional finite element analysis is known to have high computational complexity, hence computation time demanding. This renders the proposed elastography methods not suitable for real-time applications. To address this issue, an accelerated finite element method was proposed which proved to be suitable for prostate elasticity reconstruction. In this method, accurate finite element analysis of a large number of prostates undergoing TRUS probe loadings was performed. Geometry input and displacement and stress fields output obtained from the analysis were used to train a neural network mapping function to be used for elastopgraphy imaging of prostate cancer patients. The last part of the research presented in this thesis tackles an issue with the current 3D TRUS prostate needle biopsy. Current 3D TRUS prostate needle biopsy systems require registering preoperative 3D TRUS to intra-operative 2D TRUS images. Such image registration is time-consuming while its real-time implementation is yet to be developed. To bypass this registration step, concept of a robotic system was proposed which can reliably determine the preoperative TRUS probe position relative to the prostate to place at the same position relative to the prostate intra-operatively. For this purpose, a contact pressure feedback system is proposed to ensure similar prostate deformation during 3D and 2D image acquisition in order to bypass the registration step

    Data-driven resiliency assessment of medical cyber-physical systems

    Get PDF
    Advances in computing, networking, and sensing technologies have resulted in the ubiquitous deployment of medical cyber-physical systems in various clinical and personalized settings. The increasing complexity and connectivity of such systems, the tight coupling between their cyber and physical components, and the inevitable involvement of human operators in supervision and control have introduced major challenges in ensuring system reliability, safety, and security. This dissertation takes a data-driven approach to resiliency assessment of medical cyber-physical systems. Driven by large-scale studies of real safety incidents involving medical devices, we develop techniques and tools for (i) deeper understanding of incident causes and measurement of their impacts, (ii) validation of system safety mechanisms in the presence of realistic hazard scenarios, and (iii) preemptive real-time detection of safety hazards to mitigate adverse impacts on patients. We present a framework for automated analysis of structured and unstructured data from public FDA databases on medical device recalls and adverse events. This framework allows characterization of the safety issues originated from computer failures in terms of fault classes, failure modes, and recovery actions. We develop an approach for constructing ontology models that enable automated extraction of safety-related features from unstructured text. The proposed ontology model is defined based on device-specific human-in-the-loop control structures in order to facilitate the systems-theoretic causality analysis of adverse events. Our large-scale analysis of FDA data shows that medical devices are often recalled because of failure to identify all potential safety hazards, use of safety mechanisms that have not been rigorously validated, and limited capability in real-time detection and automated mitigation of hazards. To address those problems, we develop a safety hazard injection framework for experimental validation of safety mechanisms in the presence of accidental failures and malicious attacks. To reduce the test space for safety validation, this framework uses systems-theoretic accident causality models in order to identify the critical locations within the system to target software fault injection. For mitigation of safety hazards at run time, we present a model-based analysis framework that estimates the consequences of control commands sent from the software to the physical system through real-time computation of the system’s dynamics, and preemptively detects if a command is unsafe before its adverse consequences manifest in the physical system. The proposed techniques are evaluated on a real-world cyber-physical system for robot-assisted minimally invasive surgery and are shown to be more effective than existing methods in identifying system vulnerabilities and deficiencies in safety mechanisms as well as in preemptive detection of safety hazards caused by malicious attacks

    Human and Biological Skin-Inspired Electronic Skins for Advanced Sensory Functions and Multifunctionality

    Get PDF
    Department of Energy Engineering (Energy Engineering)The electronic skin (e-skin) technology is an exciting frontier to drive next generation of wearable electronics owing to its high level of wearability to curved human body, enabling high accuracy to harvest information of users and their surroundings. Altough various types of e-skins, based on several signal-transduction modes, including piezoresistive, capacitive, piezoelectric, triboelectric modes, have been developed, their performances (i.e. sensitivity, working range, linearity, multifunctionality, etc.) should be improved for the wearable applications. Recently, biomimicry of the human and biological skins has become a great inspiration for realizing novel wearable e-skin systems with exceptional multifunctionality as well as advanced sensory functions. As an ideal sensory organ, tactile sensing capabilities of human skin was emulated for the development of e-skins with enhanced sensor performances. In particular, the unique geometry and systematic sensory system of human skin have driven new opportunities in multifunctional and highly sensitive e-skin applications. In addition, extraordinary architectures for protection, locomotion, risk indication, and camouflage in biological systems provide great possibilities for second skin applications on user-interactive, skin-attachable, and ultrasensitive e-skins, as well as soft robots. Benefitting from their superior perceptive functions and multifunctionality, human and biological skins-inspired e-skins can be considered to be promising candidates for wearable device applications, such as body motion tracking, healthcare devices, acoustic sensor, and human machine interfaces (HMI). This thesis covers our recent studies about human and biological skin-inspired e-skins for advanced sensory functions and multifunctionality. First, chapter 1 highlights various types of e-skins and recent research trends in bioinspired e-skins mimicking perceptive features of human and biological skins. In chapter 2, we demonstrate highly sensitive and tactile-direction-sensitive e-skin based on human skin-inspired interlocked microdome structures. Owing to the stress concentration effect, the interlocked e-skin experiences significant change of contact area between the interlocked microdomes, resulting in high pressure sensitivity. In addition, because of the different deformation trends between microstructures in mutual contact, the interlocked e-skin can differentiate and decouple sensor signals under different directional forces, such as pressure, tensile strain, shear, and bending. In chapter 3, interlocked e-skins were designed with multilayered geometry. Although interlocked e-skin shows highly sensitive pressure sensing performances, their pressure sensing range is narrow and pressure sensitivity continuously decreases with increasing pressure level. The multilayer interlocked microdome geometry can enhance the pressure-sensing performances of e-skins, such as sensitivity, working range, and linearity. As another approach of e-skin with multilayered geometry, we demonstrate multilayered e-skin based on conductivity-gradient conductive materials in chapter 4. The conducive polymer composites with different conductivity were coated on the microdome pattern and designed as interlocked e-skin with coplanar electrode design, resulting in exceptionally high pressure-sensing performances compared with previous literatures. In chapter 5, inspired by responsive color change in biological skins, we developed mechanochromic e-skin with a hierarchical nanoparticle-in-micropore architecture. The novel design of hierarchical structure enables effective stress concentration at the interface between nanoparticle and porous structure, resulting in impressive color change under mechanical stimuli. In chapter 6, we emulate ultrahigh temperature sensitivity of human and snake skin for temperature-sensitive e-skin. The thermoresponsive composite based on semi-crystalline polymer, temperature sensor shows ultrahigh temperature sensitivity near the melting point of semi-crystalline polymer. In addition, integration of thermochromic composite, mimicking biological skins, enables dual-mode temperature sensors by electrical and colorimetric sensing capabilities. Finally, in chapter 7, we summarize this thesis along with future perspective that should be considered for next-generation e-skin electronics. Our e-skins, inspired by human and biological skin, can provide a new paradigm for realizing novel wearable electronic systems with exceptional multifunctionality as well as advanced sensory functions.clos

    Sensores em fibra ótica para o estudo biomecânico do disco intervertebral

    Get PDF
    Doutoramento em Engenharia MecânicaO presente trabalho teve como objetivo principal estudar o comportamento mecânico do disco intervertebral recorrendo a sensores em fibra ótica. Na expetativa de efetuar o melhor enquadramento do tema foi efetuada uma revisão exaustiva das várias configurações de sensores em fibra ótica que têm vindo a ser utilizadas em aplicações biomédicas e biomecânicas, nomeadamente para medição de temperatura, deformação, força e pressão. Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra ótica e apresentá-los como uma tecnologia alternativa ou até de substituição das tecnologias associadas a sensores convencionais. Tendo em vista a aplicação de sensores em fibra ótica no estudo do comportamento do disco intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, particularmente, do conceito de unidade funcional. A par de uma descrição anatómica e funcional centrada no disco intervertebral, vértebras adjacentes e ligamentos espinais foram ainda destacadas as suas propriedades mecânicas e descritos os procedimentos mais usuais no estudo dessas propriedades. A componente experimental do presente trabalho descreve um conjunto de experiências efetuadas com unidades funcionais cadavéricas utilizando sensores convencionais e sensores em fibra ótica com vista à medição da deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui ainda a medição in vivo da pressão intradiscal num disco lombar de uma ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. Finalmente apresenta-se os resultados da investigação em curso que tem como objetivo propor e desenvolver protótipos de sensores em fibra ótica para aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas soluções de sensores interferométricos para medição da pressão em fluídos corporais.The present work aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors. To address the theme an exhaustive review of the various configurations of fiber optic sensors that have been used in biomechanical and biomedical applications, in particular for measuring temperature, strain, force and pressure, was conducted. In this context, an effort was made to highlight the advantages of fiber optic sensors and present them as an alternative or even a substitution technology to conventional sensors. In view of the application of fiber optic sensors to study intervertebral disc behavior an exhaustive review of the spine and, particularly, of the spinal motion segment was made. Along with an anatomical and functional description of the intervertebral disc, the adjacent vertebrae and spinal ligaments, their mechanical properties were also highlighted as well as the most common procedures and guidelines followed in the study of these properties. The experimental section of the present work describes a set of tests performed with cadaveric spinal motion segments using conventional and fiber optic sensors to assess strain of the intervertebral disc under uniaxial compressive loads. This section also includes an experience reporting in vivo pressures measured in the lumbar disc of a sheep under general anesthesia. In this case, a commercial fiber optic sensor and a purpose-built interrogation unit were used. Finally, the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented. Thus, the proof of concept of two possible interferometric configurations intended for pressure measurement in body fluids was presented

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area
    corecore