802 research outputs found

    Tac-tiles: multimodal pie charts for visually impaired users

    Get PDF
    Tac-tiles is an accessible interface that allows visually impaired users to browse graphical information using tactile and audio feedback. The system uses a graphics tablet which is augmented with a tangible overlay tile to guide user exploration. Dynamic feedback is provided by a tactile pin-array at the fingertips, and through speech/non-speech audio cues. In designing the system, we seek to preserve the affordances and metaphors of traditional, low-tech teaching media for the blind, and combine this with the benefits of a digital representation. Traditional tangible media allow rapid, non-sequential access to data, promote easy and unambiguous access to resources such as axes and gridlines, allow the use of external memory, and preserve visual conventions, thus promoting collaboration with sighted colleagues. A prototype system was evaluated with visually impaired users, and recommendations for multimodal design were derived

    The simultaneity of complementary conditions:re-integrating and balancing analogue and digital matter(s) in basic architectural education

    Get PDF
    The actual, globally established, general digital procedures in basic architectural education,producing well-behaved, seemingly attractive up-to-date projects, spaces and first general-researchon all scale levels, apparently present a certain growing amount of deficiencies. These limitations surface only gradually, as the state of things on overall extents is generally deemed satisfactory. Some skills, such as “old-fashioned” analogue drawing are gradually eased-out ofundergraduate curricula and overall modus-operandi, due to their apparent slow inefficiencies in regard to various digital media’s rapid readiness, malleability and unproblematic, quotidian availabilities. While this state of things is understandable, it nevertheless presents a definite challenge. The challenge of questioning how the assessment of conditions and especially their representation,is conducted, prior to contextual architectural action(s) of any kind

    Designing a New Tactile Display Technology and its Disability Interactions

    Get PDF
    People with visual impairments have a strong desire for a refreshable tactile interface that can provide immediate access to full page of Braille and tactile graphics. Regrettably, existing devices come at a considerable expense and remain out of reach for many. The exorbitant costs associated with current tactile displays stem from their intricate design and the multitude of components needed for their construction. This underscores the pressing need for technological innovation that can enhance tactile displays, making them more accessible and available to individuals with visual impairments. This research thesis delves into the development of a novel tactile display technology known as Tacilia. This technology's necessity and prerequisites are informed by in-depth qualitative engagements with students who have visual impairments, alongside a systematic analysis of the prevailing architectures underpinning existing tactile display technologies. The evolution of Tacilia unfolds through iterative processes encompassing conceptualisation, prototyping, and evaluation. With Tacilia, three distinct products and interactive experiences are explored, empowering individuals to manually draw tactile graphics, generate digitally designed media through printing, and display these creations on a dynamic pin array display. This innovation underscores Tacilia's capability to streamline the creation of refreshable tactile displays, rendering them more fitting, usable, and economically viable for people with visual impairments

    DataLev: Mid-air Data Physicalisation Using Acoustic Levitation

    Get PDF
    Data physicalisation is a technique that encodes data through the geometric and material properties of an artefact, allowing users to engage with data in a more immersive and multi-sensory way. However, current methods of data physicalisation are limited in terms of their reconfgurability and the types of materials that can be used. Acoustophoresis—a method of suspending and manipulating materials using sound waves—ofers a promising solution to these challenges. In this paper, we present DataLev, a design space and platform for creating reconfgurable, multimodal data physicalisations with enriched materiality using acoustophoresis. We demonstrate the capabilities of DataLev through eight examples and evaluate its performance in terms of reconfgurability and materiality. Our work ofers a new approach to data physicalisation, enabling designers to create more dynamic, engaging, and expressive artefacts

    Digital Fabrication Approaches for the Design and Development of Shape-Changing Displays

    Get PDF
    Interactive shape-changing displays enable dynamic representations of data and information through physically reconfigurable geometry. The actuated physical deformations of these displays can be utilised in a wide range of new application areas, such as dynamic landscape and topographical modelling, architectural design, physical telepresence and object manipulation. Traditionally, shape-changing displays have a high development cost in mechanical complexity, technical skills and time/finances required for fabrication. There is still a limited number of robust shape-changing displays that go beyond one-off prototypes. Specifically, there is limited focus on low-cost/accessible design and development approaches involving digital fabrication (e.g. 3D printing). To address this challenge, this thesis presents accessible digital fabrication approaches that support the development of shape-changing displays with a range of application examples – such as physical terrain modelling and interior design artefacts. Both laser cutting and 3D printing methods have been explored to ensure generalisability and accessibility for a range of potential users. The first design-led content generation explorations show that novice users, from the general public, can successfully design and present their own application ideas using the physical animation features of the display. By engaging with domain experts in designing shape-changing content to represent data specific to their work domains the thesis was able to demonstrate the utility of shape-changing displays beyond novel systems and describe practical use-case scenarios and applications through rapid prototyping methods. This thesis then demonstrates new ways of designing and building shape-changing displays that goes beyond current implementation examples available (e.g. pin arrays and continuous surface shape-changing displays). To achieve this, the thesis demonstrates how laser cutting and 3D printing can be utilised to rapidly fabricate deformable surfaces for shape-changing displays with embedded electronics. This thesis is concluded with a discussion of research implications and future direction for this work

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    Modular 3-D-printed education tool for blind and visually impaired students oriented to net structures

    Get PDF
    Contribution: This article presents the design, creation, testing, and results after the use of a 3-D-printed educational tool that helped a blind student learning electric circuits theory in higher education. Background: Educational tools oriented to visually impaired and blind students in higher education are limited or even nonexistent in the STEM area. Previous developments on the field present in the literature, including other 3-D printing solutions, have been revised and compared to the proposed educational tool. Intended Outcomes: The tool was tested by a blind student in order to test the potential of the design to achieve a better understanding of the topology and performance of electric circuits. The main purpose of the tool described in this work is helping to increase the resources available in the field of teaching students with visual impairments. Application Design: 3-D technology has the potential to be used to create accessibility tools for visually impaired and blind individuals. Modular systems can be used to create complex structures using simple elements. A modular 3-D-printed tool was fabricated to help blind and visually impaired students to learn net structures. Findings: The 3-D tool has allowed the blind student to work autonomously in the study of simple electric circuits and supplies the teacher with a resource to communicate with the student in an easy and fast way. Updated design can be used to describe more complex net structures that can be applied to most electric circuits despite their complexity. The use of the modular system provided the blind student with a direct representation of the whole subject, even when it involved a great amount of graphical information and manipulation.This work was supported by the "Programa de AtenciĂłn a Estudiantes con Discapacidad" from Universidad Carlos III de Madrid

    Rapid prototyping for biomedical engineering: current capabilities and Challenges

    Get PDF
    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends

    New Technologies in Eye Surgery — A Challenge for Clinical, Therapeutic, and Eye Surgeons

    Get PDF
    Eye surgery is always progresses as the same way that the science advances. New emerging technologies such as bio-printing in 3D, developments and mathematical modeling in prototyping lab- on- a chip, visual implants, new biopolymers started to use in eye enucleation, detection of eye biomarkers at the cellular level, bio-sensors and new diagnostic tests should be considered to improve the quality of life of patients after surgery. This chapter provides a review of new and emerging technologies which are already working on global research centers. Emerging and converging technologies are terms used interchangeably to indicate the emergence and convergence of new technologies with demonstrated potential as disruptive technologies. Among them are: nanotechnology, biotechnology, information technology and communication, cognitive science, robotics, and artificial intelligence that have been launched as innovative products that promise to improve the quality of life and vision of patients with ocular compromised or low vision impairment. Some acronyms for these are: NBIC: Nanotechnology, Biotechnology, Information technology and Cognitive science. GNR: Genetics, Nanotechnology and Robotics. GRIN: Genetic, Robotic, Information, and Nanotechnology. BANG: Bits, Atoms, Neurons and Genes. Otherwise, to training ophthalmologist on news techniques, sophisticated simulation machines has been developing around the world
    • 

    corecore