2,204 research outputs found

    Haptics for the development of fundamental rhythm skills, including multi-limb coordination

    Get PDF
    This chapter considers the use of haptics for learning fundamental rhythm skills, including skills that depend on multi-limb coordination. Different sensory modalities have different strengths and weaknesses for the development of skills related to rhythm. For example, vision has low temporal resolution and performs poorly for tracking rhythms in real-time, whereas hearing is highly accurate. However, in the case of multi-limbed rhythms, neither hearing nor sight are particularly well suited to communicating exactly which limb does what and when, or how the limbs coordinate. By contrast, haptics can work especially well in this area, by applying haptic signals independently to each limb. We review relevant theories, including embodied interaction and biological entrainment. We present a range of applications of the Haptic Bracelets, which are computer-controlled wireless vibrotactile devices, one attached to each wrist and ankle. Haptic pulses are used to guide users in playing rhythmic patterns that require multi-limb coordination. One immediate aim of the system is to support the development of practical rhythm skills and multi-limb coordination. A longer-term goal is to aid the development of a wider range of fundamental rhythm skills including recognising, identifying, memorising, retaining, analysing, reproducing, coordinating, modifying and creating rhythms – particularly multi-stream (i.e. polyphonic) rhythmic sequences. Empirical results are presented. We reflect on related work, and discuss design issues for using haptics to support rhythm skills. Skills of this kind are essential not just to drummers and percussionists but also to keyboards players, and more generally to all musicians who need a firm grasp of rhythm

    Technology inspired design for pervasive healthcare

    Get PDF
    Pervasive healthcare technologies are increasingly using novel sensory devices that are able to measure phenomena that could not be measured before. To develop novel healthcare applications that use these largely untested technologies, it is important to have a design process that allows proper exploration of the capabilities of the novel technologies. We focus on the technology-inspired design process that was used in the development of a system to support posture and provide guidance by nudging people, and how this has lead us to explore pervasive healthcare applications

    BendableSound: An Elastic Multisensory Surface Using Touch-based interactions to Assist Children with Severe Autism During Music Therapy

    Get PDF
    Neurological Music Therapy uses live music to improve the sensorimotor regulation of children with severe autism. However, they often lack musical training and their impairments limit their interactions with musical instruments. In this paper, we present our co-design work that led to the BendableSound prototype: an elastic multisensory surface encouraging users to practice coordination movements when touching a fabric to play sounds. We present the results of a formative study conducted with 18 teachers showing BendableSound was perceived as “usable” and “attractive”. Then, we present a deployment study with 24 children with severe autism showing BendableSound is “easy to use” and may potentially have therapeutic benefits regarding attention and motor development. We propose a set of design insights that could guide the design of natural user interfaces, particularly elastic multisensory surfaces. We close with a discussion and directions for future work

    The Haptic Bracelets: learning multi-limb rhythm skills from haptic stimuli while reading

    Get PDF
    The Haptic Bracelets are a system designed to help people learn multi-limbed rhythms (which involve multiple simultaneous rhythmic patterns) while they carry out other tasks. The Haptic Bracelets consist of vibrotactiles attached to each wrist and ankle, together with a computer system to control them. In this chapter, we report on an early empirical test of the capabilities of this system, and consider de-sign implications. In the pre-test phase, participants were asked to play a series of multi-limb rhythms on a drum kit, guided by audio recordings. Participants’ per-formances in this phase provided a base reference for later comparisons. During the following passive learning phase, away from the drum kit, just two rhythms from the set were silently 'played' to each subject via vibrotactiles attached to wrists and ankles, while participants carried out a 30-minute reading comprehen-sion test. Different pairs of rhythms were chosen for different subjects to control for effects of rhythm complexity. In each case, the two rhythms were looped and alternated every few minutes. In the final phase, subjects were asked to play again at the drum kit the complete set of rhythms from the pre-test, including, of course, the two rhythms to which they had been passively exposed. Pending analysis of quantitative data focusing on accuracy, timing, number of attempts and number of errors, in this chapter we present preliminary findings based on participants’ sub-jective evaluations. Most participants thought that the technology helped them to understand rhythms and to play rhythms better, and preferred haptic to audio to find out which limb to play when. Most participants indicated that they would pre-fer using a combination of haptics and audio for learning rhythms to either mo-dality on its own. Replies to open questions were analysed to identify design is-sues, and implications for design improvements were considered

    The haptic iPod: passive learning of multi-limb rhythm skills

    Get PDF
    Recent experiments showed that the use of haptic vibrotactile devices can support the learning of multi-limb rhythms [Holland et al., 2010]. These experiments centred on a tool called the Haptic Drum Kit, which uses vibrotactiles attached to wrists and ankles, together with a computer system that controls them, and a midi drum kit. The system uses haptic signals in real time, relying on human entrainment mechanisms [Clayton, Sager and Will, 2004] rather than stimulus response, to support the user in playing multi-limbed rhythms. In the present paper, we give a preliminary report on a new experiment, that aims to examine whether passive learning of multi-limb rhythms can occur through the silent playback of rhythmic stimuli via haptics when the subject is focusing on other tasks. The prototype system used for this new experiment is referred to as the Haptic iPod.Paper presented at the Workshop: When Words Fail: What can Music Interaction tell us about HCI? at BCS HCI Conference 2011, Newcastle, U

    Feeling the beat where it counts: fostering multi-limb rhythm skills with the haptic drum kit

    Get PDF
    This paper introduces and explores a tool known as the Haptic Drum Kit. The Haptic Drum Kit employs four computer-controlled vibrotactile devices, one attached to each limb via the wrists and ankles. In the mode of use discussed in this paper, haptic pulses are used to guide the playing, on a drum kit, of rhythmic patterns that require multi-limb co-ordination. The immediate aim is to foster rhythm skills and multi-limb coordination. A broader aim is to systematically develop skills in recognizing, identifying, memorizing, retaining, analyzing, reproducing and composing monophonic and polyphonic rhythms. We consider the implications of three different theories for this approach: the work of the music educator Dalcroze (1865-1950 [1]; the entrainment theory of human rhythm perception and production [2,3]; and sensory motor contingency theory [4]. In this paper we introduce the Haptic Drum Kit; consider the implications of the above theories for this approach; report on a design study; and identify and discuss a variety of emerging design issues. As part of the design study, audio and haptic guidance was compared for five people learning to play polyphonic drum patterns of varying complexity. The results indicate that beginning drummers are able to learn intricate drum patterns from the haptic stimuli alone, although haptic plus audio is the mode of presentation preferred by subjects

    Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review

    Get PDF
    It is generally accepted that augmented feedback, provided by a human expert or a technical display, effectively enhances motor learning. However, discussion of the way to most effectively provide augmented feedback has been controversial. Related studies have focused primarily on simple or artificial tasks enhanced by visual feedback. Recently, technical advances have made it possible also to investigate more complex, realistic motor tasks and to implement not only visual, but also auditory, haptic, or multimodal augmented feedback. The aim of this review is to address the potential of augmented unimodal and multimodal feedback in the framework of motor learning theories. The review addresses the reasons for the different impacts of feedback strategies within or between the visual, auditory, and haptic modalities and the challenges that need to be overcome to provide appropriate feedback in these modalities, either in isolation or in combination. Accordingly, the design criteria for successful visual, auditory, haptic, and multimodal feedback are elaborate
    • …
    corecore