6 research outputs found

    Somatic ABC's: A Theoretical Framework for Designing, Developing and Evaluating the Building Blocks of Touch-Based Information Delivery

    Get PDF
    abstract: Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, in particular, is a promising candidate given that it is our largest sensory organ with impressive spatial and temporal acuity. Although some approaches have been proposed for touch-based information delivery, they are not without limitations including high learning curves, limited applicability and/or limited expression. This is largely due to the lack of a versatile, comprehensive design theory--specifically, a theory that addresses the design of touch-based building blocks for expandable, efficient, rich and robust touch languages that are easy to learn and use. Moreover, beyond design, there is a lack of implementation and evaluation theories for such languages. To overcome these limitations, a unified, theoretical framework, inspired by natural, spoken language, is proposed called Somatic ABC's for Articulating (designing), Building (developing) and Confirming (evaluating) touch-based languages. To evaluate the usefulness of Somatic ABC's, its design, implementation and evaluation theories were applied to create communication languages for two very unique application areas: audio described movies and motor learning. These applications were chosen as they presented opportunities for complementing communication by offloading information, typically conveyed visually and/or aurally, to the skin. For both studies, it was found that Somatic ABC's aided the design, development and evaluation of rich somatic languages with distinct and natural communication units.Dissertation/ThesisPh.D. Computer Science 201

    Combining 3-D geovisualization with force feedback driven user interaction

    Full text link
    We describe a prototype software system for investigating novel human-computer interaction techniques for 3-D geospatial data. This system, M4-Geo (Multi-Modal Mesh Manipulation of Geospatial data), aims to provide a more intuitive interface for directly manipulating 3-D surface data, such as digital terrain models (DTM). The M4-Geo system takes place within a 3-D environment and uses a Phantom haptic force feedback device to enhance 3-D computer graphics with touch-based interactions. The Phantom uses a 3-D force feedback stylus, which acts as a virtual “finger tip ” that allows the user to feel the shape (morphology) of the terrain’s surface in great detail. In addition, it acts as a touch sensitive tool for different GIS tasks, such as digitizing (draping) of lines and polygons directly onto a 3-D surface and directly deforming surfaces (by pushing or pulling the stylus in or out). The user may adjust the properties of the surface deformation (e.g., soft or hard) locally by painting it with a special “material color.” The overlap of visual and force representation of 3-D data aides hand-eye coordination for these tasks and helps the user to perceive the 3-D spatial data in a more holistic, multi-sensory way. The use of such a 3-D force feedback device for direct interaction may thus provide more intuitive and efficient alternatives to the mouse and keyboards driven interactions common today, in particular in areas related to digital landscape design, surface hydrology and geotechnical engineering

    Haptic glyphs (hlyphs) - structured haptic objects for haptic visualization

    Get PDF
    Haptic devices can be used to visualize information. As well as representing tangible surfaces and forces to enhance virtual training simulators for instance, haptic devices have been used to realize tactile versions of diagrams and visualizations (such as line graphs and bar charts). Such depictions enable blind or partial sighted users to perceive and understand information. However, there are multiple challenges when presenting information tactically: (1) it is difficult to understand a summary of the information, and (2) it is challenging to represent multivariate information through these haptic representations. In this paper we present how hlyphs (haptic versions of the graphical glyph) can be created, describe design guidelines, and detail how they can be used to represent both summaries and multivariate information
    corecore