18,544 research outputs found

    Multimodal bivariate thematic maps with auditory and haptic display

    Get PDF
    Presented at the 8th International Conference on Auditory Display (ICAD), Kyoto, Japan, July 2-5, 2002.The purpose of this study is to explore the possibility of multimodal bivariate thematic maps by utilizing auditory and haptic displays. With four different modes of display, the completion time of tasks and the recall (retention) rate were measured in two separate experiments. In terms of the completion time, haptic displays seem to interfere with other modalities. However, Color-Auditory displays performed similarly to Color-Color displays. For the recall rate, multimodal displays have higher recall rates, with users performing the best on Auditory-Haptic displays. These findings confirmed the possibility of using auditory and haptic displays in visually dominant geographic information systems (GIS). We speculate that the natural quantitative hierarchies in auditory and haptic displays provide an advantage in the use of multiodal displays

    Textured Surfaces for Ultrasound Haptic Displays

    Get PDF
    We demonstrate a technique for rendering textured haptic surfaces in mid-air, using an ultrasound haptic display. Our technique renders tessellated 3D `haptic' shapes with different waveform properties, creating surfaces with distinct perceptions

    A haptic-enabled multimodal interface for the planning of hip arthroplasty

    Get PDF
    Multimodal environments help fuse a diverse range of sensory modalities, which is particularly important when integrating the complex data involved in surgical preoperative planning. The authors apply a multimodal interface for preoperative planning of hip arthroplasty with a user interface that integrates immersive stereo displays and haptic modalities. This article overviews this multimodal application framework and discusses the benefits of incorporating the haptic modality in this area

    Haptic user experience evaluation for virtual reality

    Get PDF
    Hapticians (engineers, researchers or designers) are developing 'haptic displays' to replicate the complexity of sensations and interactivity accommodated by the hand. Haptic displays hold potential in allowing users to interact with each other and manipulate things in virtual reality (VR), providing them with a limitless safe environment. However, technological advances alone are insufficient to develop a high-quality haptic user experience (UX). Research indicates that current evaluation instruments, guidelines and education on haptic engineering and perception do not address haptic interaction and experience design needs. This research investigates the problem, endeavouring to consolidate findings into helpful haptic UX evaluation instruments, design principles, and guidelines to support haptic design practice.</p

    Personalising Vibrotactile Displays through Perceptual Sensitivity Adjustment

    Get PDF
    Haptic displays are commonly limited to transmitting a discrete set of tactile motives. In this paper, we explore the transmission of real-valued information through vibrotactile displays. We simulate spatial continuity with three perceptual models commonly used to create phantom sensations: the linear, logarithmic and power model. We show that these generic models lead to limited decoding precision, and propose a method for model personalization adjusting to idiosyncratic and spatial variations in perceptual sensitivity. We evaluate this approach using two haptic display layouts: circular, worn around the wrist and the upper arm, and straight, worn along the forearm. Results of a user study measuring continuous value decoding precision show that users were able to decode continuous values with relatively high accuracy (4.4% mean error), circular layouts performed particularly well, and personalisation through sensitivity adjustment increased decoding precision

    I see where this is going: a psychophysical study of directional mid-air haptics and apparent tactile motion

    Get PDF
    Mid-air haptic technology can render a plethora of tactile sensations including points, lines, shapes, and textures. To do so, one requires increasingly complex haptic displays. Meanwhile, tactile illusions have had widespread success in the development of contact and wearable haptic displays. In this paper, we exploit the apparent tactile motion illusion to display mid-air haptic directional lines; a prerequisite for the rendering of shapes and icons. We present two pilot studies and a psychophysical study that contrasts a dynamic tactile pointer (DTP) to an apparent tactile pointer (ATP) in terms of direction recognition. To that end, we identify optimal duration and direction parameters for both DTP and ATP mid-air haptic lines and discuss the implications of our findings with respect to haptic feedback design, and device complexity

    Assessing the Impact of Haptic Peripheral Displays for UAV Operators

    Get PDF
    Objectives: A pilot study was conducted to investigate the effectiveness of continuous haptic peripheral displays in supporting multiple UAV supervisory control. Background: Previous research shows that continuous auditory peripheral displays can enhance operator performance in monitoring events that are continuous in nature, such as monitoring how well UAVs stay on their pre-planned courses. This research also shows that auditory alerts can be masked by other auditory information. Command and control operations are generally performed in noisy environments with multiple auditory alerts presented to the operators. In order to avoid this masking problem, another potentially useful sensory channel for providing redundant information to UAV operators is the haptic channel. Method: A pilot experiment was conducted with 13 participants, using a simulated multiple UAV supervisory control task. All participants completed two haptic feedback conditions (continuous and threshold), where they received alerts based on UAV course deviations and late arrivals to targets. Results: Threshold haptic feedback was found to be more effective for late target arrivals, whereas continuous haptic feedback resulted in faster reactions to course deviations. Conclusions: Continuous haptic feedback appears to be more appropriate for monitoring events that are continuous in nature (i.e., how well a UAV keeps its course). In contrast, threshold haptic feedback appears to better support response to discrete events (i.e., late target arrivals). Future research: Because this is a pilot study, more research is needed to validate these preliminary findings. A direct comparison between auditory and haptic feedback is also needed to provide better insights into the potential benefits of multi-modal peripheral displays in command and control of multiple UAVs.Prepared for Charles River Analytics, Inc

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given
    • …
    corecore